RESUMO
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the COVID-19 pandemic, has been evolving rapidly causing emergence of new variants and health uncertainties. Monitoring the evolution of the virus was of the utmost importance for public health interventions and the development of national and global mitigation strategies. Here, we report national data on the emergence of new variants, their distribution, and dynamics in a 3-year study conducted from March 2020 to the end of January 2023 in the Republic of Serbia. Nasopharyngeal and oropharyngeal swabs from 2,398 COVID-19-positive patients were collected and sequenced using three different next generation technologies: Oxford Nanopore, Ion Torrent, and DNBSeq. In the subset of 2,107 SARS-CoV-2 sequences which met the quality requirements, detection of mutations, assignment to SARS-CoV-2 lineages, and phylogenetic analysis were performed. During the 3-year period, we detected three variants of concern, namely, Alpha (5.6%), Delta (7.4%), and Omicron (70.3%) and one variant of interest-Omicron recombinant "Kraken" (XBB1.5) (<1%), whereas 16.8% of the samples belonged to other SARS-CoV-2 (sub)lineages. The detected SARS-CoV-2 (sub)lineages resulted in eight COVID-19 pandemic waves in Serbia, which correspond to the pandemic waves reported in Europe and the United States. Wave dynamics in Serbia showed the most resemblance with the profile of pandemic waves in southern Europe, consistent with the southeastern European location of Serbia. The samples were assigned to sixteen SARS-CoV-2 Nextstrain clades: 20A, 20B, 20C, 20D, 20E, 20G, 20I, 21J, 21K, 21L, 22A, 22B, 22C, 22D, 22E, and 22F and six different Omicron recombinants (XZ, XAZ, XAS, XBB, XBF, and XBK). The 10 most common mutations detected in the coding and untranslated regions of the SARS-CoV-2 genomes included four mutations affecting the spike protein (S:D614G, S:T478K, S:P681H, and S:S477N) and one mutation at each of the following positions: 5'-untranslated region (5'UTR:241); N protein (N:RG203KR); NSP3 protein (NSP3:F106F); NSP4 protein (NSP4:T492I); NSP6 protein (NSP6: S106/G107/F108 - triple deletion), and NSP12b protein (NSP12b:P314L). This national-level study is the most comprehensive in terms of sequencing and genomic surveillance of SARS-CoV-2 during the pandemic in Serbia, highlighting the importance of establishing and maintaining good national practice for monitoring SARS-CoV-2 and other viruses circulating worldwide.
RESUMO
American foulbrood (AFB) is exclusively an infectious disease of honey bee larvae (Apis mellifera) and their subspecies that is spread easily and rapidly and is often present in apiaries. Due to the resistance and pathogenicity of the bacterial causative agent of the disease, which has considerable epizootiological and economic significance for beekeeping, AFB was classified as a highly dangerous, infectious animal disease by the World Organization for Animal Health (WOAH). Considering the severity of the infection, a frequent occurrence, rapid and easy spread, epizooty and enzooty are common. We tried to present an overview of the latest information related to AFB through several chapters. In addition to the latest data on the etiology of the causative agent, the most important elements of the clinical signs of the disease are also listed. Along with an overview of classic microbiological and the latest molecular methods of diagnosis, we also discuss AFB treatment from its differential diagnostic aspect. We hope that through demonstrating the mentioned preventive measures and measures of good beekeeping practice, the review will contribute to the preservation of the health of bees and therefore the overall biodiversity of the planet.
RESUMO
West Nile virus (WNV) can affect humans, birds, horses and another mammals, causing asymptomatic infection, mild febrile disease, neurological and systematic disease and death. In order to gain insight into the prevalence of WNV, a monitoring program has been established in the Republic of Serbia. Whole genome sequencing is essential for the molecular epizootiological analysis of virus entry and transmission routes, especially in high-risk regions. This paper describes the development of a multiplex PCR based NGS protocol for whole genome sequencing of WNV lineage 2 directly from biological samples using Oxford Nanopore (ONT) platform. The results obtained using this platform, confirmed by Sanger sequencing, indicate that this protocol can be applied to obtain whole sequences of the WNV genome, even when the virus concentration in the sample is medium, Ct value is approximately 30. The use of this protocol does not require prior virus isolation on cell culture nor the depletion of host nucleic acids.
Assuntos
Nanoporos , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Humanos , Animais , Cavalos/genética , Vírus do Nilo Ocidental/genética , Febre do Nilo Ocidental/diagnóstico , Febre do Nilo Ocidental/veterinária , Reação em Cadeia da Polimerase Multiplex , Sequenciamento Completo do Genoma , Mamíferos/genéticaRESUMO
Blastocystis is a common protist colonizing the gastrointestinal tract of humans and various animals. The first subtyping of Blastocystis isolates in pigs and humans in Serbia revealed unusual avian-specific subtype ST6 in humans. In total, 48 pig faecal specimens collected on seven pig farms and 50 human faecal specimens positive to Blastocystis by microscopic examination were selected for the study. Eleven randomly selected PCR-positive pig samples and 10 samples from human patients (with gastrointestinal complaints) were subjected to SSU rDNA sequencing. Three subtypes were identified (ST3, ST5 and ST6) by phylogenetic analysis. ST5 was found in all pig samples; while in human samples, we detected ST3 and ST6. The latter subtype is relatively uncommon in Europe and highly adapted to avian hosts; therefore, the possibility of sporadic zoonotic transmission to human patients should not be ignored.
Assuntos
Infecções por Blastocystis/veterinária , Blastocystis/classificação , Doenças dos Suínos/parasitologia , Zoonoses , Animais , Blastocystis/isolamento & purificação , Infecções por Blastocystis/epidemiologia , Infecções por Blastocystis/parasitologia , Humanos , Filogenia , Reação em Cadeia da Polimerase/veterinária , Sérvia/epidemiologia , SuínosRESUMO
Lumpy skin disease (LSD) is an important animal disease with significant health and economic impacts. It is considered a notifiable disease by the OIE. Attenuated strains of LSDV have been successfully used as vaccines (LAV) but can also produce mild or systemic reactions. Vaccination campaigns using LAVs are therefore only viable if accompanying DIVA assays are available. Two DIVA qPCR assays able to distinguish Neethling-based LAVs and wild-type LSDV were developed. Upon validation, both assays were shown to have high sensitivity and specificity with a diagnostic performance comparable to other published DIVA assays. This confirmed their potential as reliable tools to confirm infection in animals during vaccination campaigns based on Neethling vaccine strains.
RESUMO
The results of the Serbian national integrated West Nile virus (WNV) surveillance program conducted in 2018 and funded by the Serbian Veterinary Directorate are presented. The WNV surveillance program encompassed the entire territory of Serbia and was conducted by the veterinary service in collaboration with entomologists and ornithologists. The objective of the program was early detection of WNV circulation in the environment and timely reporting to the public health service and local authorities to increase clinical and mosquito control preparedness. The program was based on the detection of WNV presence in wild birds (natural hosts) and mosquitoes (virus vectors) and on serological testing of sentinel horses (WNV-specific IgM antibodies). The season 2018 was confirmed to be the season of the most intensive WNV circulation with the highest number and severity of human cases in Serbia ever reported. The most intense WNV circulation was observed in the northern and central parts of Serbia including Vojvodina Province, the Belgrade City area, and surrounding districts, where most positive samples were detected among sentinel animals, mosquitoes and wild birds. The majority of human cases were preceded by the detection of WNV circulation during the surveillance. The WNV surveillance program in 2018 showed satisfactory results in the capacity to indicate the spatial distribution of the risk for humans and sensitivity to early detection of WNV circulation in the environment.