RESUMO
The nematode Caenorhabditis elegans has been extensively used as a model for the study of innate immune responses against bacterial pathogens. While it is well established that the worm mounts distinct transcriptional responses to different bacterial species, it is still unclear in how far it can fine-tune its response to different strains of a single pathogen species, especially if the strains vary in virulence and infection dynamics. To rectify this knowledge gap, we systematically analyzed the C. elegans response to two strains of Bacillus thuringiensis (Bt), MYBt18247 (Bt247) and MYBt18679 (Bt679), which produce different pore forming toxins (PFTs) and vary in infection dynamics. We combined host transcriptomics with cytopathological characterizations and identified both a common and also a differentiated response to the two strains, the latter comprising almost 10% of the infection responsive genes. Functional genetic analyses revealed that the AP-1 component gene jun-1 mediates the common response to both Bt strains. In contrast, the strain-specific response is mediated by the C. elegans GATA transcription factor ELT-2, a homolog of Drosophila SERPENT and vertebrate GATA4-6, and a known master regulator of intestinal responses in the nematode. elt-2 RNAi knockdown decreased resistance to Bt679, but remarkably, increased survival on Bt247. The elt-2 silencing-mediated increase in survival was characterized by reduced intestinal tissue damage despite a high pathogen burden and might thus involve increased tolerance. Additional functional genetic analyses confirmed the involvement of distinct signaling pathways in the C. elegans defense response: the p38-MAPK pathway acts either directly with or in parallel to elt-2 in mediating resistance to Bt679 infection but is not required for protection against Bt247. Our results further suggest that the elt-2 silencing-mediated increase in survival on Bt247 is multifactorial, influenced by the nuclear hormone receptors NHR-99 and NHR-193, and may further involve lipid metabolism and detoxification. Our study highlights that the nematode C. elegans with its comparatively simple immune defense system is capable of generating a differentiated response to distinct strains of the same pathogen species. Importantly, our study provides a molecular insight into the diversity of biological processes that are influenced by a single master regulator and jointly determine host survival after pathogen infection.
Assuntos
Bacillus thuringiensis/metabolismo , Infecções Bacterianas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fatores de Transcrição GATA/metabolismo , Sistema de Sinalização das MAP Quinases , Transcrição Gênica , Animais , Bacillus thuringiensis/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/microbiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/microbiologia , Proteínas de Caenorhabditis elegans/genética , Fatores de Transcrição GATA/genéticaRESUMO
In a number of species, individuals exposed to pathogens can mount an immune response and transmit this immunological experience to their offspring, thereby protecting them against persistent threats. Such vertical transfer of immunity, named trans-generational immune priming (TGIP), has been described in both vertebrates and invertebrates. Although increasingly studied during the last decade, the mechanisms underlying TGIP in invertebrates are still elusive, especially those protecting the earliest offspring life stage, i.e. the embryo developing in the egg. In the present study, we combined different proteomic and transcriptomic approaches to determine whether mothers transfer a "signal" (such as fragments of infecting bacteria), mRNA and/or protein/peptide effectors to protect their eggs against two natural bacterial pathogens, namely the Gram-positive Bacillus thuringiensis and the Gram-negative Serratia entomophila. By taking the mealworm beetle Tenebrio molitor as a biological model, our results suggest that eggs are mainly protected by an active direct transfer of a restricted number of immune proteins and of antimicrobial peptides. In contrast, the present data do not support the involvement of mRNA transfer while the transmission of a "signal", if it happens, is marginal and only occurs within 24h after maternal exposure to bacteria. This work exemplifies how combining global approaches helps to disentangle the different scenarios of a complex trait, providing a comprehensive characterization of TGIP mechanisms in T. molitor. It also paves the way for future alike studies focusing on TGIP in a wide range of invertebrates and vertebrates to identify additional candidates that could be specific to TGIP and to investigate whether the TGIP mechanisms found herein are specific or common to all insect species.
Assuntos
Infecções Bacterianas/imunologia , Larva/microbiologia , Óvulo/imunologia , Serratia/patogenicidade , Tenebrio/microbiologia , Animais , Bacillus thuringiensis/patogenicidade , Imunidade/imunologia , Proteômica/métodos , Tenebrio/imunologiaRESUMO
The gram-negative pathogen Providencia stuartii forms floating communities within which adjacent cells are in apparent contact, before depositing as canonical surface-attached biofilms. Because porins are the most abundant proteins in the outer membrane of gram-negative bacteria, we hypothesized that they could be involved in cell-to-cell contact and undertook a structure-function relationship study on the two porins of P. stuartii, Omp-Pst1 and Omp-Pst2. Our crystal structures reveal that these porins can self-associate through their extracellular loops, forming dimers of trimers (DOTs) that could enable cell-to-cell contact within floating communities. Support for this hypothesis was obtained by studying the porin-dependent aggregation of liposomes and model cells. The observation that facing channels are open in the two porin structures suggests that DOTs could not only promote cell-to-cell contact but also contribute to intercellular communication.
Assuntos
Biofilmes , Porinas/metabolismo , Providencia/fisiologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Cristalografia por Raios X , Dimerização , Porinas/química , Porinas/genética , Providencia/química , Providencia/genéticaRESUMO
Chitinous structures are physiologically fundamental in insects. They form the insect exoskeleton, play important roles in physiological systems and provide physical, chemical and biological protections in insects. As critically important structures in insects, chitinous structures are attractive target sites for the development of new insect-pest-control strategies. Chitinous structures in insects are complex and their formation and maintenance are dynamically regulated with the growth and development of insects. In the past few decades, studies on insect chitinous structures have shed lights on the physiological functions, compositions, structural formation, and regulation of the chitinous structures. Current understanding of the chitinous structures has indicated opportunities for exploring new target sites for insect control. Mechanisms to disrupt chitinous structures in insects have been studied and strategies for the potential development of new means of insect control by targeting chitinous structures have been proposed and are practically to be explored.
Assuntos
Quitina , Controle de Insetos , Animais , InsetosRESUMO
Development of resistance to the insecticidal toxins from Bacillus thuringiensis (Bt) in insects is the major threat to the continued success of transgenic Bt crops in agriculture. The fitness of Bt-resistant insects on Bt and non-Bt plants is a key parameter that determines the development of Bt resistance in insect populations. In this study, a comprehensive analysis of the fitness of Bt-resistant Trichoplusia ni strains on Bt cotton leaves was conducted. The Bt-resistant T. ni strains carried two genetically independent mechanisms of resistance to Bt toxins Cry1Ac and Cry2Ab. The effects of the two resistance mechanisms, individually and in combination, on the fitness of the T. ni strains on conventional non-Bt cotton and on transgenic Bt cotton leaves expressing a single-toxin Cry1Ac (Bollgard I) or two Bt toxins Cry1Ac and Cry2Ab (Bollgard II) were examined. The presence of Bt toxins in plants reduced the fitness of resistant insects, indicated by decreased net reproductive rate (R0 ) and intrinsic rate of increase (r). The reduction in fitness in resistant T. ni on Bollgard II leaves was greater than that on Bollgard I leaves. A 12.4-day asynchrony of adult emergence between the susceptible T. ni grown on non-Bt cotton leaves and the dual-toxin-resistant T. ni on Bollgard II leaves was observed. Therefore, multitoxin Bt plants not only reduce the probability for T. ni to develop resistance but also strongly reduce the fitness of resistant insects feeding on the plants.
Assuntos
Proteínas de Bactérias , Endotoxinas , Aptidão Genética , Gossypium , Proteínas Hemolisinas , Herbivoria , Mariposas/fisiologia , Animais , Toxinas de Bacillus thuringiensis , Feminino , Resistência a Inseticidas , Masculino , Oviposição , Plantas Geneticamente Modificadas , Crescimento DemográficoRESUMO
Bacillus thuringiensis subsp. israelensis (Bti) is a natural pathogen of dipterans widely used as a biological insecticide for mosquito control. To characterize the response of mosquitoes to intoxication with Bti, the transcriptome profile of Bti-exposed susceptible Aedes aegypti larvae was analysed using Illumina RNA-seq. Gene expression of 11 alkaline phosphatases (ALPs) was further investigated by real time quantitative polymerase chain reaction and ALP activity was measured in the susceptible strain and in four strains resistant to a single Bti Cry toxin or to Bti. These strains were unexposed or exposed to their toxin of selection. Although all resistant strains constitutively exhibited a higher level of transcription of ALP genes than the susceptible strain, they showed a lower total ALP activity. The intoxication with different individual Cry toxins triggered a global pattern of ALP gene under-transcription in all the one-toxin-resistant strains but involving different specific sets of ALPs in each resistant phenotype. Most of the ALPs involved are not known Cry-binding proteins. RNA interference experiment demonstrated that reducing ALP expression conferred increased the survival of larvae exposed to Cry4Aa, confirming the involvement of ALP in Cry4Aa toxicity.
Assuntos
Aedes/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Bacillus thuringiensis/genética , Proteínas de Bactérias/farmacologia , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Inseticidas/farmacologia , Larva/efeitos dos fármacos , Aedes/genética , Aedes/microbiologia , Fosfatase Alcalina/genética , Animais , Toxinas de Bacillus thuringiensis , Larva/genética , Larva/microbiologia , Dados de Sequência Molecular , Controle de Mosquitos/métodos , Fenótipo , Interferência de RNA , RNA Interferente Pequeno/genética , TranscriptomaRESUMO
BACKGROUND: Despite the intensive use of Bacillus thuringiensis israelensis (Bti) toxins for mosquito control, little is known about the long term effect of exposure to this cocktail of toxins on target mosquito populations. In contrast to the many cases of resistance to Bacillus thuringiensis Cry toxins observed in other insects, there is no evidence so far for Bti resistance evolution in field mosquito populations. High fitness costs measured in a Bti selected mosquito laboratory strain suggest that evolving resistance to Bti is costly. The aim of the present study was to identify transcription level and polymorphism variations associated with resistance to Bti toxins in the dengue vector Aedes aegypti. We used RNA sequencing (RNA-seq) for comparing a laboratory-selected strain showing elevated resistance to Bti toxins and its parental non-selected susceptible strain. As the resistant strain displayed two marked larval development phenotypes (slow and normal), each phenotype was analyzed separately in order to evidence potential links between resistance mechanisms and mosquito life-history traits. RESULTS: A total of 12,458 genes were detected of which 844 were differentially transcribed between the resistant and susceptible strains. Polymorphism analysis revealed a total of 68,541 SNPs of which 12,571 SNPs exhibited more than 40% frequency difference between the resistant and susceptible strains, affecting 2,953 genes. Bti resistance is associated with changes in the transcription level of enzymes involved in detoxification and chitin metabolism. Among previously described Bti-toxin receptors, four alkaline phosphatases (ALPs) were differentially transcribed between resistant and susceptible larvae, and non-synonymous changes affected the protein sequence of one cadherin, six aminopeptidases (APNs) and four α-amylases. Other putative Cry receptors located in lipid rafts, such as flotillin and glycoside hydrolases, were under-transcribed and/or contained non-synonymous substitutions. Finally, immunity-related genes showed contrasted transcription and polymorphisms patterns between the two developmental resistant phenotypes, suggesting the existence of trade-offs between Bti-resistance, life-history traits and immunity. CONCLUSIONS: The present study is the first to analyze the whole transcriptome of Bti-resistant mosquitoes by RNA-seq, shedding light on the importance of studying both transcription levels and sequence polymorphism variations to get a comprehensive view of insecticide resistance.
Assuntos
Aedes/efeitos dos fármacos , Aedes/genética , Bacillus thuringiensis/metabolismo , Toxinas Bacterianas/toxicidade , Aedes/enzimologia , Aedes/crescimento & desenvolvimento , Aedes/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias , Enzimas/genética , Enzimas/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas/genética , Larva , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , TranscriptomaRESUMO
Worldwide evolution of mosquito resistance to chemical insecticides represents a major challenge for public health, and the future of vector control largely relies on the development of biological insecticides that can be used in combination with chemicals (integrated management), with the expectation that populations already resistant to chemicals will not become readily resistant to biological insecticides. However, little is known about the metabolic pathways affected by selection with chemical or biological insecticides. Here we show that Aedes aegypti, a laboratory mosquito strain selected with a biological insecticide (Bacillus thuringiensis israelensis, Bti) evolved increased transcription of many genes coding for endopeptidases while most genes coding for detoxification enzymes were under-expressed. By contrast, in strains selected with chemicals, genes encoding detoxification enzymes were mostly over-expressed. In all the resistant strains, genes involved in immune response were under-transcribed, suggesting that basal immunity might be a general adjustment variable to compensate metabolic costs caused by insecticide selection. Bioassays generally showed no evidence for an increased susceptibility of selected strains towards the other insecticide type, and all chemical-resistant strains were as susceptible to Bti as the unselected parent strain, which is a good premise for sustainable integrated management of mosquito populations resistant to chemicals.
Assuntos
Aedes/genética , Perfilação da Expressão Gênica , Genes de Insetos , Inseticidas/farmacologia , Controle Biológico de Vetores , AnimaisRESUMO
Sprays of commercial preparations of the bacterium Bacillus thuringiensis subsp. israelensis are widely used for the control of mosquito larvae. Despite an abundant literature on B. thuringiensis subsp. israelensis field efficiency on mosquito control, few studies have evaluated the fate of spores in the environment after treatments. In the present article, two complementary experiments were conducted to study the effect of different parameters on B. thuringiensis subsp. israelensis persistence and recycling, in field conditions and in the laboratory. First, we monitored B. thuringiensis subsp. israelensis persistence in the field in two contrasting regions in France: the Rhône-Alpes region, where mosquito breeding sites are temporary ponds under forest cover with large amounts of decaying leaf matter on the ground and the Mediterranean region characterized by open breeding sites such as brackish marshes. Viable B. thuringiensis subsp. israelensis spores can persist for months after a treatment, and their quantity is explained both by the vegetation type and by the number of local treatments. We found no evidence of B. thuringiensis subsp. israelensis recycling in the field. Then, we tested the effect of water level, substrate type, salinity and presence of mosquito larvae on the persistence/recycling of B. thuringiensis subsp. israelensis spores in controlled laboratory conditions (microcosms). We found no effect of change in water level or salinity on B. thuringiensis subsp. israelensis persistence over time (75 days). B. thuringiensis subsp. israelensis spores tended to persist longer in substrates containing organic matter compared to sand-only substrates. B. thuringiensis subsp. israelensis recycling only occurred in presence of mosquito larvae but was unrelated to the presence of organic matter.
Assuntos
Bacillus thuringiensis , Meio Ambiente , Controle de Mosquitos , Animais , Culicidae/microbiologia , França , Larva , Esporos BacterianosRESUMO
The bioinsecticide Bacillus thuringiensis subsp. israelensis is a larvicide used worldwide for mosquito control, which contains three Cry toxins and one Cyt toxin. We investigated for the first time in Aedes aegypti (1) the evolution of resistance and cross-resistance of strains selected with each Cry toxin, and (2) the effect of pre-selection with Cry toxin on the evolution of resistance to a mix of Bti toxins. Cross resistance was higher between Cry4Ba and Cry11Aa than between Cry4Aa and either Cry4Ba or Cry11Aa, suggesting both common and specific mechanisms of resistance. Pre-selecting resistance to each Cry toxins facilitated the development of resistance to the full Bti toxins cocktail.
Assuntos
Aedes/microbiologia , Proteínas de Bactérias/toxicidade , Endotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Resistência a Inseticidas/genética , Controle de Mosquitos/métodos , Controle Biológico de Vetores/métodos , Animais , Toxinas de Bacillus thuringiensisRESUMO
The bioinsecticide Bacillus thuringiensis var. israelensis (Bti) is increasingly used worldwide for mosquito control. Although no established resistance to Bti has been described in the field so far, a resistant Aedes aegypti strain (LiTOX strain) was selected in the laboratory using field-collected leaf litter containing Bti toxins. This selected strain exhibits a moderate resistance level to Bti, but a high resistance level to individual Cry toxins. As Bti contains four different toxins, generalist resistance mechanisms affecting mosquito tolerance to different toxins were expected in the resistant strain. In the present work, we show that the resistant strain exhibits an increase of various gut proteolytic activities including trypsins, leucine-aminopeptidases, and carboxypeptidase A activities. These elevated proteolytic activities resulted in a faster activation of Cry4Aa protoxins while Cry4Ba or Cry11Aa were not affected. These results suggest that changes in proteolytic activities may contribute to Bti resistance in mosquitoes together with other mechanisms.
Assuntos
Aedes/enzimologia , Aedes/microbiologia , Bacillus thuringiensis , Proteínas de Bactérias , Endotoxinas , Proteínas Hemolisinas , Controle Biológico de Vetores , Aedes/crescimento & desenvolvimento , Animais , Toxinas de Bacillus thuringiensis , Trato Gastrointestinal/enzimologia , Proteínas de Insetos/metabolismo , Larva/enzimologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Metaloexopeptidases/metabolismo , Proteólise , Serina Endopeptidases/metabolismoRESUMO
Bacillus thuringiensis subsp. israelensis (Bti) is increasingly used worldwide for mosquito control and is the only larvicide used in the French Rhône-Alpes region since decades. The artificial selection of mosquitoes with field-persistent Bti collected in breeding sites from this region led to a moderate level of resistance to Bti, but to relatively high levels of resistance to individual Bti Cry toxins. Based on this observation, we developed a bioassay procedure using each Bti Cry toxin separately to detect cryptic Bti-resistance evolving in field mosquito populations. Although no resistance to Bti was detected in none of the three mosquito species tested (Aedes rusticus, Aedes sticticus and Aedes vexans), an increased tolerance to Cry4Aa (3.5-fold) and Cry11Aa toxins (8-fold) was found in one Ae. sticticus population compared to other populations of the same species, suggesting that resistance to Bti may be arising in this population. This study confirms previous works showing a lack of Bti resistance in field mosquito populations treated for decades with this bioinsecticide. It also provides a first panorama of their susceptibility status to individual Bti Cry toxins. In combination with bioassays with Bti, bioassays with separate Cry toxins allow a more sensitive monitoring of Bti-resistance in the field.
Assuntos
Aedes/efeitos dos fármacos , Bacillus thuringiensis/química , Proteínas de Bactérias/farmacologia , Agentes de Controle Biológico , Endotoxinas/farmacologia , Proteínas Hemolisinas/farmacologia , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/isolamento & purificação , Bioensaio , Endotoxinas/isolamento & purificação , Proteínas Hemolisinas/isolamento & purificação , Resistência a Inseticidas , Controle de Mosquitos/métodosRESUMO
BACKGROUND: Bacillus thuringiensis var. israelensis (Bti) is a natural larval mosquito pathogen producing pore-forming toxins targeting the midgut of Diptera larvae. It is used worldwide for mosquito control. Resistance mechanisms of an Aedes aegypti laboratory strain selected for 30 generations with field-collected leaf litter containing Bti toxins were investigated in larval midguts at two levels: 1. gene transcription using DNA microarray and RT-qPCR and 2. differential expression of brush border membrane proteins using DIGE (Differential In Gel Electrophoresis). RESULTS: Several Bti Cry toxin receptors including alkaline phosphatases and N-aminopeptidases and toxin-binding V-ATPases exhibited altered expression levels in the resistant strain. The under-expression of putative Bti-receptors is consistent with Bt-resistance mechanisms previously described in Lepidoptera. Four soluble metalloproteinases were found under-transcribed together with a drastic decrease of metalloproteinases activity in the resistant strain, suggesting a role in resistance by decreasing the amount of activated Cry toxins in the larval midgut. CONCLUSIONS: By combining transcriptomic and proteomic approaches, we detected expression changes at nearly each step of the ingestion-to-infection process, providing a short list of genes and proteins potentially involved in Bti-resistance whose implication needs to be validated. Collectively, these results open the way to further functional analyses to better characterize Bti-resistance mechanisms in mosquitoes.
Assuntos
Bacillus thuringiensis/metabolismo , Bacillus thuringiensis/patogenicidade , Culicidae/metabolismo , Culicidae/microbiologia , Larva/metabolismo , Larva/microbiologia , Proteômica/métodos , Transcriptoma/genética , Febre Amarela/transmissão , Fosfatase Alcalina/genética , Fosfatase Alcalina/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Culicidae/genética , Larva/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismoRESUMO
Bacillus thuringiensis subsp. israelensis is a bioinsecticide increasingly used worldwide for mosquito control. Despite its apparent low level of persistence in the field due to the rapid loss of its insecticidal activity, an increasing number of studies suggested that the recycling of B. thuringiensis subsp. israelensis can occur under specific, unknown conditions. Decaying leaf litters sampled in mosquito breeding sites in the French Rhône-Alpes region several months after a treatment were shown to exhibit a high level of larval toxicity and contained large amounts of spores. In the present article, we show that the high concentration of toxins found in these litters is consistent with spore recycling in the field, which gave rise to the production of new crystal toxins. Furthermore, in these toxic leaf litter samples, Cry4Aa and Cry4Ba toxins became the major toxins instead of Cyt1Aa in the commercial mixture. In a microcosm experiment performed in the laboratory, we also demonstrated that the toxins, when added in their crystal form to nontoxic leaf litter, exhibited patterns of differential persistence consistent with the proportions of toxins observed in the field-collected toxic leaf litter samples (Cry4 > Cry11 > Cyt). These results give strong evidence that B. thuringiensis subsp. israelensis recycled in specific breeding sites containing leaf litters, and one would be justified in asking whether mosquitoes can become resistant when exposed to field-persistent B. thuringiensis subsp. israelensis for several generations.
Assuntos
Bacillus thuringiensis/crescimento & desenvolvimento , Microbiologia Ambiental , Esporos Bacterianos/crescimento & desenvolvimento , Animais , Bacillus thuringiensis/patogenicidade , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/análise , Proteínas de Bactérias/toxicidade , Culicidae/microbiologia , Culicidae/fisiologia , Endotoxinas/análise , Endotoxinas/toxicidade , França , Proteínas Hemolisinas/análise , Proteínas Hemolisinas/toxicidade , Larva/microbiologia , Larva/fisiologia , Esporos Bacterianos/patogenicidade , Análise de SobrevidaRESUMO
Bacillus thuringiensis subsp. israelensis is a bacterium producing crystals containing Cry and Cyt proteins, which are toxic for mosquito larvae. Nothing is known about the interaction between crystal toxins and decaying leaf litter, which is a major component of several mosquito breeding sites and represents an important food source. In the present work, we investigated the behavior of B. thuringiensis subsp. israelensis toxic crystals sprayed on leaf litter. In the presence of leaf litter, a 60% decrease in the amount of Cyt toxin detectable by immunology (enzyme-linked immunosorbent assays [ELISAs]) was observed, while the respective proportions of Cry toxins were not affected. The toxicity of Cry toxins toward Aedes aegypti larvae was not affected by leaf litter, while the synergistic effect of Cyt toxins on all B. thuringiensis subsp. israelensis Cry toxins was decreased by about 20% when mixed with leaf litter. The toxicity of two commercial B. thuringiensis subsp. israelensis strains (VectoBac WG and VectoBac 12AS) and a laboratory-produced B. thuringiensis subsp. israelensis strain decreased by about 70% when mixed with leaf litter. Taken together, these results suggest that Cyt toxins interact with leaf litter, resulting in a decreased toxicity of B. thuringiensis subsp. israelensis in litter-rich environments and thereby dramatically reducing the efficiency of mosquitocidal treatments.
Assuntos
Aedes/microbiologia , Bacillus thuringiensis/patogenicidade , Toxinas Bacterianas/toxicidade , Controle Biológico de Vetores/métodos , Folhas de Planta/metabolismo , Aedes/efeitos dos fármacos , Animais , Toxinas Bacterianas/metabolismo , Ensaio de Imunoadsorção Enzimática , Larva/efeitos dos fármacos , Larva/microbiologiaRESUMO
The control of mosquitoes transmitting infectious diseases relies mainly on the use of chemical insecticides. However, resistance to most chemical insecticides threatens mosquito control programs. In this context, the spraying of toxins produced by the bacteria Bacillus thuringiensis subsp. israelensis (Bti) in larval habitats represents an alternative to chemical insecticides and is now widely used for mosquito control. Recent studies suggest that resistance of mosquitoes to Bti toxin may occur locally but mechanisms have not been characterized so far. In the present study, we investigated gene transcription level variations associated with Bti toxin resistance in the mosquito Aedes aegypti using a next-generation sequencing approach. More than 6 million short cDNA tags were sequenced from larvae of two strains sharing the same genetic background: a Bti toxins-resistant strain and a susceptible strain. These cDNA tags were mapped with a high coverage (308 reads per position in average) to more than 6000 genes of Ae. aegypti genome and used to quantify and compare the transcription level of these genes between the two mosquito strains. Among them, 86 genes were significantly differentially transcribed more than 4-fold in the Bti toxins resistant strain comparatively to the susceptible strain. These included gene families previously associated with Bti toxins resistance such as serine proteases, alkaline phosphatase and alpha-amylase. These results are discussed in regards of potential Bti toxins resistance mechanisms in mosquitoes.
Assuntos
Aedes/efeitos dos fármacos , Toxinas Bacterianas/farmacologia , Perfilação da Expressão Gênica , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Aedes/genética , Animais , Bacillus thuringiensis/metabolismo , Evolução Biológica , Feminino , Genes de Insetos , Resistência a Inseticidas/genética , Larva/química , Larva/efeitos dos fármacos , Larva/genética , Masculino , Controle de Mosquitos , Família Multigênica , Controle Biológico de Vetores , Seleção Genética , Análise de Sequência de DNARESUMO
Providencia stuartii is a highly social pathogen responsible for nosocomial chronic urinary tract infections. The bacterium indeed forms floating communities of cells (FCC) besides and prior-to canonical surface-attached biofilms (SAB). Within P. stuartii FCC, cells are riveted one to another owing to by self-interactions between its porins, viz. Omp-Pst1 and Omp-Pst2. In pathophysiological conditions, P. stuartii is principally exposed to high concentrations of urea, ammonia, bicarbonate, creatinine and to large variations of pH, questioning how these environmental cues affect socialization, and whether formation of SAB and FCC protects cells against those. Results from our investigations indicate that FCC and SAB can both form in the urinary tract, endowing cells with increased resistance and fitness. They additionally show that while Omp-Pst1 is the main gateway allowing penetration of urea, bicarbonate and ammonia into the periplasm, expression of Omp-Pst2 enables resistance to them.
RESUMO
Bacterial homologous lysine and arginine decarboxylases play major roles in the acid stress response, physiology, antibiotic resistance and virulence. The Escherichia coli enzymes are considered as their archetypes. Whereas acid stress triggers polymerisation of the E. coli lysine decarboxylase LdcI, such behaviour has not been observed for the arginine decarboxylase Adc. Here we show that the Adc from a multidrug-resistant human pathogen Providencia stuartii massively polymerises into filaments whose cryo-EM structure reveals pronounced differences between Adc and LdcI assembly mechanisms. While the structural determinants of Adc polymerisation are conserved only in certain Providencia and Burkholderia species, acid stress-induced polymerisation of LdcI appears general for enterobacteria. Analysis of the expression, activity and oligomerisation of the P. stuartii Adc further highlights the distinct properties of this unusual protein and lays a platform for future investigation of the role of supramolecular assembly in the superfamily or arginine and lysine decarboxylases.
Assuntos
Carboxiliases , Providencia , Carboxiliases/genética , Carboxiliases/metabolismo , Escherichia coli/metabolismo , Providencia/enzimologiaRESUMO
Cry11Aa and Cry11Ba are the two most potent toxins produced by mosquitocidal Bacillus thuringiensis subsp. israelensis and jegathesan, respectively. The toxins naturally crystallize within the host; however, the crystals are too small for structure determination at synchrotron sources. Therefore, we applied serial femtosecond crystallography at X-ray free electron lasers to in vivo-grown nanocrystals of these toxins. The structure of Cry11Aa was determined de novo using the single-wavelength anomalous dispersion method, which in turn enabled the determination of the Cry11Ba structure by molecular replacement. The two structures reveal a new pattern for in vivo crystallization of Cry toxins, whereby each of their three domains packs with a symmetrically identical domain, and a cleavable crystal packing motif is located within the protoxin rather than at the termini. The diversity of in vivo crystallization patterns suggests explanations for their varied levels of toxicity and rational approaches to improve these toxins for mosquito control.
Assuntos
Bacillus thuringiensis , Nanopartículas , Animais , Proteínas de Bactérias/toxicidade , Endotoxinas , Proteínas Hemolisinas/toxicidade , Larva , Controle de MosquitosRESUMO
The development of finely tuned and reliable crystallization processes to obtain crystalline formulations of proteins has received growing interest from different scientific fields, including toxinology and structural biology, as well as from industry, notably for biotechnological and medical applications. As a natural crystal-making bacterium, Bacillus thuringiensis (Bt) has evolved through millions of years to produce hundreds of highly structurally diverse pesticidal proteins as micrometer-sized crystals. The long-term stability of Bt protein crystals in aqueous environments and their specific and controlled dissolution are characteristics that are particularly sought after. In this article, I explore whether the crystallization machinery of Bt can be hijacked as a means to produce (micro)crystalline formulations of proteins for three different applications: (i) to develop new bioinsecticidal formulations based on rationally improved crystalline toxins, (ii) to functionalize crystals with specific characteristics for biotechnological and medical applications, and (iii) to produce microcrystals of custom proteins for structural biology. By developing the needs of these different fields to figure out if and how Bt could meet each specific requirement, I discuss the already published and/or patented attempts and provide guidelines for future investigations in some underexplored yet promising domains.