Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Cell Biochem ; 118(6): 1330-1340, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27862234

RESUMO

Interleukin-3 (IL-3) is a well-characterized growth factor in hematopoietic cells, but it is also expressed in other cell types with poorly described functions. Many studies have provided evidence that IL-3 plays an important role in cell survival. We have previously shown that IL-3 is able to increase glucose uptake in HEK293 cells, suggesting that this factor requires sustained glucose metabolism to promote cell survival. In this study, we demonstrate that IL-3 contributes to cell survival under oxidative stress, a prominent feature in the pathophysiology of cancer, diabetes, and neurodegenerative diseases, as well as in the aging process. Our results suggest a molecular mechanism that involves signaling pathways mediated by PI-3k/Akt and Erk. Altogether, these findings show an important role for IL-3 in supporting the viability of non-hematopoietic systems. J. Cell. Biochem. 118: 1330-1340, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Glucose/metabolismo , Peróxido de Hidrogênio/efeitos adversos , Interleucina-3/metabolismo , Morte Celular , Sobrevivência Celular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Int J Mol Sci ; 18(4)2017 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-28379159

RESUMO

Anthocyanins are pigments with antihyperglycemic properties, and they are potential candidates for developing functional foods for the therapy or prevention of Diabetes mellitus type 2 (DM2). The mechanism of these beneficial effects of anthocyanins are, however, hard to explain, given their very low bioavailability due to poor intestinal absorption. We propose that free fatty acid receptor 1 (FFA1, also named GPR40), is involved in an inhibitory effect of the anthocyanidin delphinidin over intestinal glucose absorption. We show the direct effects of delphinidin on the intestine using jejunum samples from RF/J mice, and the human intestinal cell lines HT-29, Caco-2, and NCM460. By the use of specific pharmacological antagonists, we determined that delphinidin inhibits glucose absorption in both mouse jejunum and a human enterocytic cell line in a FFA1-dependent manner. Delphinidin also affects the function of sodium-glucose cotransporter 1 (SGLT1). Intracellular signaling after FFA1 activation involved cAMP increase and cytosolic Ca2+ oscillations originated from intracellular Ca2+ stores and were followed by store-operated Ca2+ entry. Taken together, our results suggest a new GPR-40 mediated local mechanism of action for delphinidin over intestinal cells that may in part explain its antidiabetic effect. These findings are promising for the search for new prevention and pharmacological treatment strategies for DM2 management.


Assuntos
Antocianinas/farmacologia , Glucose/metabolismo , Intestinos/química , Jejuno/química , Receptores Acoplados a Proteínas G/metabolismo , Animais , Células CACO-2 , Cálcio/metabolismo , Linhagem Celular , Regulação da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Intestinos/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Camundongos , Transdução de Sinais/efeitos dos fármacos
3.
Animals (Basel) ; 14(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38540033

RESUMO

During acute ruminal acidosis, the manifestation of aseptic polysynovitis and lameness in cattle has been observed. Evidence suggests that joint inflammation can be attributed to the metabolic alterations induced by D-lactate in fibroblast-like synoviocytes (FLSs). We aimed to investigate whether andrographolide could mitigate the inflammation and metabolic alterations induced by D-lactate in bovine fibroblast-like synoviocytes (bFLSs). To assess this, bFLSs were cultured in the presence or absence of andrographolide. We evaluated its potential interference with the expression of proinflammatory cytokines, COX-2, HIF-1α, and LDHA using RT-qPCR. Furthermore, we investigated its potential interference with PI3K/Akt signaling and IκBα degradation through immunoblotting and flow cytometry, respectively. Our observations revealed that andrographolide reduced the elevation of IL-6, IL-8, COX-2, HIF-1α, and LDHA induced by D-lactate. Additionally, andrographolide demonstrated interference with the PI3K/Akt and NF-κB pathways in bFLSs. In conclusion, our findings suggest that andrographolide can potentially reverse the inflammatory effects and metabolic changes induced by D-lactate in bFLSs, showing promise as a therapeutic intervention for managing these conditions associated with lameness.

4.
Animals (Basel) ; 13(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36899697

RESUMO

The bovine endometrium has an important defensive role in the postpartum period that acts when an inflammatory process associated with tissue damage or infection by bacteria is produced. Endometrial cells release cytokines and chemokines that recruit inflammatory cells, which release danger-associated molecular patterns (DAMPs), such as adenosine triphosphate (ATP), and initiate and regulate the inflammatory response. However, the role of ATP in bovine endometrial cells is unclear. The aim of this study was to determine the effect of ATP on interleukin-8 (IL-8) release, intracellular calcium mobilization, ERK1/2 phosphorylation, and the role of P2Y receptors, in bovine endometrial cells. Bovine endometrial (BEND) cells were incubated with ATP and the IL-8 release was determined by the ELISA assay. ATP of 50 and 100 µM significantly increased IL-8 released in BEND cells (50 µM: 23.16 ± 3.82 pg/mL, p = 0.0018; 100 µM: 30.14 ± 7.43 pg/mL, p = 0.0004). ATP (50 µM) also induced rapid intracellular calcium mobilization in Fura-2AM-loaded BEND cells, as well as ERK1/2 phosphorylation (ratio 1.1 ± 0.04, p = 0.0049). Suramin (50 µM), a pan-antagonist of P2Y receptors, partially reduced the intracellular calcium mobilization, ERK1/2 phosphorylation (ratio 0.83 ± 0.08, p = 0.045), and IL-8 release (9.67 ± 0.02 pg/mL, p = 0.014) induced by ATP. Finally, BEND cells expressed higher mRNA levels of P2Y1 and P2Y2 purinergic subtype receptors, and lower levels of P2Y11 and P2Y12 receptors, as determined by RT-qPCR. In conclusion, these results showed that ATP activates pro-inflammatory responses in BEND cells, which are partially mediated via P2Y receptors, and BEND cells express the mRNA of subtypes of P2Y receptors, which could have a key role in bovine endometrial inflammation.

5.
Sci Rep ; 13(1): 3257, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36828912

RESUMO

Lameness is a common condition in dairy cattle caused by infectious or noninfectious agents. Joint lesions are the second most common cause of lameness and can be diagnosed in association with the presentation of digit injuries. Fibroblast-like synoviocyte (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the expression of proinflammatory mediators. Tumor necrosis factor-alpha (TNF-α) is a potent proinflammatory cytokine involved in cyclooxygenase 2 (COX-2) and proinflammatory cytokine expression in FLS. Previously, TNF-α was demonstrated to increase hypoxia-inducible Factor 1 (HIF-1), a transcription factor that rewires cellular metabolism and increases the expression of interleukin (IL)-6 in bovine FLS (bFLS). Despite this, the proinflammatory effects of TNF-α in bFLS on metabolic reprogramming have been poorly studied. We hypothesized that TNF-α increases glycolysis and in this way controls the expression of IL-6, IL-8, and COX-2 in bFLS. Results first, gas chromatography/mass spectrometry (GC/MS)-based untargeted metabolomics revealed that bTNF-α altered the metabolism of bFLS, increasing glucose, isoleucine, leucine, methionine, valine, tyrosine, and lysine and decreasing malate, fumarate, α-ketoglutarate, stearate, palmitate, laurate, aspartate, and alanine. In addition, metabolic flux analysis using D-glucose-13C6 demonstrated an increase of pyruvate and a reduction in malate and citrate levels, suggesting a decreased flux toward the tricarboxylic acid cycle after bTNF-α stimulation. However, bTNF-α increased lactate dehydrogenase subunit A (LDHA), IL-6, IL-8, IL-1ß and COX-2 expression, which was dependent on glycolysis and the PI3K/Akt pathway. The use of FX11 and dichloroacetate (DCA), an inhibitor of LDHA and pyruvate dehydrogenase kinase (PDK) respectively, partially reduced the expression of IL-6. Our results suggest that bTNF-α induces metabolic reprogramming that favors glycolysis in bFLS and increases IL-6, IL-8, IL-1ß and COX-2/PGE2.


Assuntos
Artrite Reumatoide , Sinoviócitos , Bovinos , Animais , Sinoviócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Membrana Sinovial/patologia , Dinoprostona/metabolismo , Interleucina-8/metabolismo , Malatos/metabolismo , Artrite Reumatoide/patologia , Ciclo-Oxigenase 2/metabolismo , Coxeadura Animal , Fosfatidilinositol 3-Quinases/metabolismo , Citocinas/metabolismo , Células Cultivadas , Fibroblastos/metabolismo
6.
Dev Comp Immunol ; 145: 104728, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37164278

RESUMO

d-lactate is a metabolite originating from bacterial metabolism that accumulates as a result of dietary disturbances in cattle, leading to ruminal acidosis. d-lactate exerts functions as a metabolic signal inducing metabolic reprogramming and extracellular trap (ET) release in polymorphonuclear leucocytes (PMNs). We previously demonstrated that d-lactate induces metabolic reprogramming via hypoxia-induced factor 1 alpha (HIF-1α) stabilization in bovine fibroblast-like synoviocytes (FLSs). In the present study, the role of HIF-1 in ET formation induced by d-lactate was assessed. HIF-1α stabilization in PMNs was controlled by mitochondrial reactive oxygen species (mtROS) release. Furthermore, inhibition of mitochondrial complex I and scavenging of mtROS decreased d-lactate-triggered ETosis. d-lactate-enhanced HIF-1α accumulation was dependent on the PI3K/Akt pathway but independent of GSK-3ß activity. Pharmacological blockade of the PI3K/Akt/HIF-1 and GSK-3ß axes inhibited d-lactate-triggered ETosis and downregulated PDK1 and LDHA expression. However, only GSK-3ß inhibition decreased the expression of glycogen metabolism enzymes and prevented the decline in glycogen stores induced by d-lactate exposure. The results of this study suggest that mtROS, PI3K/Akt/HIF-1 and GSK-3ß axes regulate carbohydrate metabolism adaptations that support d-lactate-induced ET formation in cattle.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Bovinos , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Ácido Láctico , Fator 1 Induzível por Hipóxia/metabolismo , Hipóxia , Glicogênio
7.
Dev Comp Immunol ; 135: 104492, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35830898

RESUMO

D-lactic acidosis is a metabolic disease of cattle caused by the digestive overgrowth of bacteria that are highly producers of d-lactate, a metabolite that then reaches and accumulates in the bloodstream. d-lactate is a proinflammatory agent in cattle that induces the formation of extracellular traps (ETs) in polymorphonuclear leucocytes (PMN), although information on PMN metabolic requirements for this response mechanism is insufficient. In the present study, metabolic pathways involved in ET formation induced by d-lactate were studied. We show that d-lactate but not l-lactate induced ET formation in cattle PMN. We analyzed the metabolomic changes induced by d-lactate in bovine PMN using gas chromatography-mass spectrometry (GC-MS). Several metabolic pathways were altered, including glycolysis/gluconeogenesis, amino sugar and nucleotide sugar metabolism, galactose metabolism, starch and sucrose metabolism, fructose and mannose metabolism, and pentose phosphate pathway. d-lactate increased intracellular levels of glucose and glucose-6-phosphate, and increased uptake of the fluorescent glucose analog 2-NBDG, suggesting improved glycolytic activity. In addition, using an enzymatic assay and transmission electron microscopy (TEM), we observed that d-lactate was able to decrease intracellular glycogen levels and the presence of glycogen granules. Relatedly, d-lactate increased the expression of enzymes of glycolysis, gluconeogenesis and glycogen metabolism. In addition, 2DG (a hexokinase inhibitor), 3PO (a 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 inhibitor), MB05032 (inhibitor of fructose-1,6-bisphosphatase) and CP-91149 (inhibitor of glycogen phosphorylase) reduced d-lactate-triggered ETosis. Taken together, these results suggest that d-lactate induces a metabolic rewiring that increases glycolysis, gluconeogenesis and glycogenolysis, all of which are required for d-lactate-induced ET release in cattle PMN.


Assuntos
Armadilhas Extracelulares , Animais , Bovinos , Armadilhas Extracelulares/metabolismo , Gluconeogênese , Glucose/metabolismo , Glicogênio/metabolismo , Glicólise , Ácido Láctico/metabolismo
8.
Front Vet Sci ; 8: 625347, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796579

RESUMO

Acute ruminal acidosis (ARA) occurs after an excessive intake of rapidly fermentable carbohydrates and is characterized by the overproduction of D-lactate in the rumen that reaches the bloodstream. Lameness presentation, one of the primary consequences of ARA in cattle, is associated with the occurrence of laminitis and aseptic polysynovitis. Fibroblast-like synoviocytes (FLS) are predominant cells of synovia and play a key role in the pathophysiology of joint diseases, thus increasing the chances of the release of pro-inflammatory cytokines. Increased D-lactate levels and disturbances in the metabolism of carbohydrates, pyruvates, and amino acids are observed in the synovial fluid of heifers with ARA-related polysynovitis prior to neutrophil infiltration, suggesting an early involvement of metabolic disturbances in joint inflammation. We hypothesized that D-lactate induces metabolic reprogramming, along with an inflammatory response, in bovine exposed FLS. Gas chromatography-mass spectrometry (GC-MS)-based metabolomics revealed that D-lactate disrupts the metabolism of bovine FLS, mainly enhancing glycolysis and gluconeogenesis, pyruvate metabolism, and galactose metabolism. The reverse-transcription quantitative PCR (RT-qPCR) analysis revealed an increased expression of metabolic-related genes, including hypoxia-inducible factor 1 (HIF-1)α, glucose transporter 1 (Glut-1), L-lactate dehydrogenase subunit A (L-LDHA), and pyruvate dehydrogenase kinase 1 (PDK-1). Along with metabolic disturbances, D-lactate also induced an overexpression and the secretion of IL-6. Furthermore, the inhibition of HIF-1, PI3K/Akt, and NF-κB reduced the expression of IL-6 and metabolic-related genes. The results of this study reveal a potential role for D-lactate in bFLS metabolic reprogramming and support a close relationship between inflammation and metabolism in cattle.

9.
Animals (Basel) ; 10(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202791

RESUMO

Acute ruminal acidosis (ARA) is caused by the excessive intake of highly fermentable carbohydrates, followed by the massive production of D-lactate and the appearance of neutrophilic aseptic polysynovitis. Bovines with ARA develop different lesions, such as ruminitis, polioencephalomalacia (calves), liver abscess and lameness. Lameness in cattle with ARA is closely associated with the presence of laminitis and polysynovitis. However, despite decades of research in bovine lameness as consequence of ruminal acidosis, the aetiology and pathogenesis remain unclear. Fibroblast-like synoviocytes (FLSs) are components of synovial tissue, and under pathological conditions, FLSs increase cytokine production, aggravating inflammatory responses. We hypothesized that D-lactate could induce cytokine production in bovine FLSs. Analysis by qRT-PCR and ELISA revealed that D-lactate, but not L-lactate, increased the expression of IL-6 and IL-8 in a monocarboxylate transporter-1-dependent manner. In addition, we observed that the inhibition of the p38, ERK1/2, PI3K/Akt, and NF-κB pathways reduced the production of IL-8 and IL-6. In conclusion, our results suggest that D-lactate induces an inflammatory response; this study contributes to the literature by revealing a potential key role of D-lactate in the polysynovitis of cattle with ARA.

10.
Vet Immunol Immunopathol ; 209: 53-60, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30885306

RESUMO

Fatty acids are well known metabolic intermediaries but also have a role in the immune response. Long-chain fatty acids such as omega-6 and -9 activate neutrophil function through free fatty acid (FFA)-1 receptor in bovines. Although omega-3 has also been suggested to influence neutrophil function, the details remain unclear. The goal of this study was to determine the presence of the bovine FFA4 receptor and its effect on neutrophil responses. We treated bovine neutrophils with the natural and synthetic agonists of FFA4 receptor docosahexaenoic acid (DHA) and TUG-891, respectively, and assessed oxidative and no oxidative response. We detected protein and mRNA FFA4 receptor expression through immunofluorescence, immunoblot, and RT-PCR analysis. DHA and TUG-891 both increased intracellular calcium mobilisation in bovine neutrophils, with 50% effective concentrations of 99 µM and 73 µM, respectively, which was partially reduced after treatment with the FFA4 antagonist AH7614. Furthermore, DHA and TUG-891 increased matrix metalloproteinase (MMP)-9 granules release and superoxide production. AH7614 and the intracellular calcium chelator BAPTA-AM decreased the superoxide production induced by TUG-891 and by both DHA and TUG-891, respectively, suggesting a key role of intracellular calcium in FFA4 agonists-induced superoxide production. These results highlight an important mechanism of bovine neutrophil responses mediated via FFA4 receptor, which can further inform the development of new formulations for DHA-enriched feed supplements to enhance innate immunity in dairy cattle.


Assuntos
Compostos de Bifenilo/farmacologia , Ácidos Docosa-Hexaenoicos/farmacologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fenilpropionatos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo , Animais , Cálcio/metabolismo , Bovinos , Feminino , Metaloproteinase 9 da Matriz/metabolismo , Receptores Acoplados a Proteínas G/agonistas
11.
Sci Rep ; 9(1): 5452, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932023

RESUMO

Acute ruminal acidosis (ARA) is the result of increased intake of highly fermentable carbohydrates, which frequently occurs in dairy cattle and is associated with aseptic polysynovitis. To characterise the metabolic changes in the joints of animals with ARA, we performed an untargeted gas chromatography-mass spectrometry (GC-MS)-based metabolomic analysis of synovial fluid. Seven heifers were challenged with an intraruminal oligofructose overload (13 g/kg of body weight [BW]) dissolved in water. Synovial fluid samples were collected at 0, 9 and 24 h post-overload. Metabolome analysis revealed the presence of 67 metabolites. At 9 h post-overload, glyceric acid, cellobiose, fructose and lactic acid were all increased, whereas at 24 h, sorbitol, lactic acid and fructose levels were all increased >10-fold. At 24 h, citric acid and threonine levels were significantly reduced. We detected increased L- and D-lactate, and the presence of interleukin-6 (IL-6) in synovial fluid. Furthermore, using bovine fibroblast-like synoviocytes, we observed that D-lactate induces IL-6 synthesis. Our results suggest that ARA produces severe metabolomic changes in synovial fluid, including disturbances in starch and sucrose metabolism, and increased lactate levels. These changes were observed prior to the appearance of synovitis, suggesting a potential role in the onset of polysynovitis.


Assuntos
Acidose/metabolismo , Rúmen/metabolismo , Líquido Sinovial/metabolismo , Sinovite/metabolismo , Animais , Bovinos , Cromatografia Líquida de Alta Pressão , Feminino , Concentração de Íons de Hidrogênio , Interleucina-6/metabolismo , Ácido Láctico/administração & dosagem , Metabolômica , Neutrófilos/patologia , Oligossacarídeos/administração & dosagem
12.
Vet Res Commun ; 43(3): 179-186, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31187404

RESUMO

Endometrial epithelial cells play a key defensive role as part of the innate immune response of cow uterus. An association between risk of acquiring infectious diseases and increased levels of free fatty acids postpartum has been suggested, and the use of omega-3 fatty acids such as docosahexaenoic acid (DHA) has been proposed as a beneficial strategy to improve immunity and fertility. The goal of our study was to demonstrate the presence of free fatty acid (FFA)-1 and 4 receptors in endometrial cells and to investigate their role on DHA interference in lipopolysaccharide (LPS)-induced inflammatory endometrial activation. We demonstrated that the bovine endometrial (BEND) cells line and bovine endometrium express both FFA1 and FFA4 receptors. FFA1 and FFA4 receptors were localized in the epithelium lining the endometrial cavity and in endometrial glands whereas in BEND cells a characteristic cell membrane localization of both receptors was observed. DHA, a FFA4 natural agonist, increased intracellular calcium mobilization in BEND cells, but the FFA1 agonists oleic and linoleic acids did not increase this response. DHA-induced intracellular calcium mobilization was inhibited by the FFA4 and FFA1 antagonists AH7614 and GW1100, respectively. DHA significantly reduced LPS-induced prostaglandin E2 (PGE2) production, but none of the antagonists reduced the effect produced by DHA. On the contrary, linoleic acid increased LPS-induced PGE2 production. In conclusion, endometrial cells express FFA4 and FFA1 receptors, and DHA induces intracellular calcium release via FFA4 and FFA1 receptors. DHA reduces PGE2, but this response was not mediated by FFA4 or FFA1 receptors.


Assuntos
Endométrio/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/imunologia , Animais , Bovinos , Endométrio/citologia , Endométrio/efeitos dos fármacos , Endométrio/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Receptores Acoplados a Proteínas G/metabolismo
13.
Innate Immun ; 22(6): 479-89, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27363707

RESUMO

Fatty acids have been recognized as regulators of immune function in addition to their known metabolic role. Long-chain fatty acids bind free fatty acid receptor (FFAR)-1/GPR40, which is expressed on bovine neutrophils, and increase responses such as granule release and gene expression. In this study, we investigated the molecular mechanisms governing the up-regulation of cyclooxygenase-2 (COX-2) and IL-8, as well as matrix metalloproteinase (MMP)-9 granule release in FFAR1/GPR40 agonist-stimulated neutrophils. Our results showed that natural (oleic and linoleic acid) and synthetic (GW9508) FFAR1/GPR40 agonists increased ERK1/2, p38 MAPK and Akt phosphorylation, and that the FFAR1/GPR40 antagonist GW1100 reduced these responses. We evaluated the levels of IκBα, a component of the classical activation pathway of the transcription factor NF-κB, and we observed IκBα reduction after stimulation with FFAR1/GPR40 agonists, an effect that was inhibited by GW1100 or the inhibitors UO126, SB203580 or LY294002. FFAR1/GPR40 agonists increased COX-2 and IL-8 expression, which was inhibited by GW1100 and an NF-κB inhibitor. Finally, the FFAR1/GPR40 agonist-induced MMP-9 granule release was reduced by GW1100 and UO126. In conclusion, FFAR1/GPR40 agonists differentially stimulate neutrophil functions; COX-2 and IL-8 are expressed after FFAR1/GPR40 activation via NF-κB, IκBα reduction is FFAR1/GPR40- and PI3K/MAPK-dependent, and MMP-9 granule release is FFAR1/GPR40- and ERK1/2-dependent.


Assuntos
Gelatinases/metabolismo , Neutrófilos/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Vesículas Secretórias/metabolismo , Transdução de Sinais , Animais , Benzoatos/farmacologia , Bovinos , Degranulação Celular , Células Cultivadas , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Gelatinases/genética , Regulação da Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neutrófilos/efeitos dos fármacos , Pirimidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Transdução de Sinais/efeitos dos fármacos
14.
J Immunol Res ; 2015: 120348, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26634216

RESUMO

N-Formyl-methionyl-leucyl-phenylalanine (fMLP) and platelet-activating factor (PAF) induce similar intracellular signalling profiles; but only fMLP induces interleukin-8 (IL-8) release and nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity in neutrophils. Because the role of ROS on IL-8 release in neutrophils is until now controversial, we assessed if NADPH oxidase is involved in the IL-8 secretions and PI3K/Akt, MAPK, and NF-κB pathways activity induced by fMLP. Neutrophils were obtained from healthy volunteers. IL-8 was measured by ELISA, IL-8 mRNA by qPCR, and ROS production by luminol-amplified chemiluminescence, reduction of ferricytochrome c, and FACS. Intracellular pH changes were detected by spectrofluorescence. ERK1/2, p38 MAPK, and Akt phosphorylation were analysed by immunoblotting and NF-κB was analysed by immunocytochemistry. Hydroxy-3-methoxyaceto-phenone (HMAP), diphenyleneiodonium (DPI), and siRNA Nox2 reduced the ROS and IL-8 release in neutrophils treated with fMLP. HMAP, DPI, and amiloride (a Na(+)/H(+) exchanger inhibitor) inhibited the Akt phosphorylation and did not affect the p38 MAPK and ERK1/2 activity. DPI and HMAP reduced NF-κB translocation induced by fMLP. We showed that IL-8 release induced by fMLP is dependent on NADPH oxidase, and ROS could play a redundant role in cell signalling, ultimately activating the PI3K/Akt and NF-κB pathways in neutrophils.


Assuntos
Interleucina-8/metabolismo , Glicoproteínas de Membrana/genética , N-Formilmetionina Leucil-Fenilalanina/farmacologia , NADPH Oxidases/genética , Neutrófilos/efeitos dos fármacos , Espécies Reativas de Oxigênio/imunologia , Transdução de Sinais/efeitos dos fármacos , Acetofenonas/farmacologia , Amilorida/farmacologia , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Regulação da Expressão Gênica , Humanos , Interleucina-8/genética , Interleucina-8/imunologia , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/imunologia , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/imunologia , NADPH Oxidase 2 , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/imunologia , NF-kappa B/genética , NF-kappa B/imunologia , Neutrófilos/citologia , Neutrófilos/imunologia , Oniocompostos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/imunologia , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/imunologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA