Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Immunol ; 54(1): e2350616, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37840200

RESUMO

Dendritic cells (DCs) are essential in antitumor immunity. In humans, three main DC subsets are defined: two types of conventional DCs (cDC1s and cDC2s) and plasmacytoid DCs (pDCs). To study DC subsets in the tumor microenvironment (TME), it is important to correctly identify them in tumor tissues. Tumor-derived DCs are often analyzed in cell suspensions in which spatial information about DCs which can be important to determine their function within the TME is lost. Therefore, we developed the first standardized and optimized multiplex immunohistochemistry panel, simultaneously detecting cDC1s, cDC2s, and pDCs within their tissue context. We report on this panel's development, validation, and quantitative analysis. A multiplex immunohistochemistry panel consisting of CD1c, CD303, X-C motif chemokine receptor 1, CD14, CD19, a tumor marker, and DAPI was established. The ImmuNet machine learning pipeline was trained for the detection of DC subsets. The performance of ImmuNet was compared with conventional cell phenotyping software. Ultimately, frequencies of DC subsets within several tumors were defined. In conclusion, this panel provides a method to study cDC1s, cDC2s, and pDCs in the spatial context of the TME, which supports unraveling their specific roles in antitumor immunity.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Imuno-Histoquímica , Biomarcadores Tumorais , Neoplasias/metabolismo , Células Dendríticas
2.
PLoS Comput Biol ; 19(2): e1010918, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36848395

RESUMO

Two decades of in vivo imaging have revealed how diverse T-cell motion patterns can be. Such recordings have sparked the notion of search "strategies": T cells may have evolved ways to search for antigen efficiently depending on the task at hand. Mathematical models have indeed confirmed that several observed T-cell migration patterns resemble a theoretical optimum; for example, frequent turning, stop-and-go motion, or alternating short and long motile runs have all been interpreted as deliberately tuned behaviours, optimising the cell's chance of finding antigen. But the same behaviours could also arise simply because T cells cannot follow a straight, regular path through the tight spaces they navigate. Even if T cells do follow a theoretically optimal pattern, the question remains: which parts of that pattern have truly been evolved for search, and which merely reflect constraints from the cell's migration machinery and surroundings? We here employ an approach from the field of evolutionary biology to examine how cells might evolve search strategies under realistic constraints. Using a cellular Potts model (CPM), where motion arises from intracellular dynamics interacting with cell shape and a constraining environment, we simulate evolutionary optimization of a simple task: explore as much area as possible. We find that our simulated cells indeed evolve their motility patterns. But the evolved behaviors are not shaped solely by what is functionally optimal; importantly, they also reflect mechanistic constraints. Cells in our model evolve several motility characteristics previously attributed to search optimisation-even though these features are not beneficial for the task given here. Our results stress that search patterns may evolve for other reasons than being "optimal". In part, they may be the inevitable side effects of interactions between cell shape, intracellular dynamics, and the diverse environments T cells face in vivo.


Assuntos
Modelos Teóricos , Linfócitos T , Movimento Celular
3.
Eur J Immunol ; 51(6): 1494-1504, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675038

RESUMO

Dendritic cells (DCs) are key regulators of the immune system that shape T cell responses. Regulation of T cell induction by DCs may occur via the intracellular enzyme indoleamine 2,3-dioxygenase 1 (IDO), which catalyzes conversion of the essential amino acid tryptophan into kynurenine. Here, we examined the role of IDO in human peripheral blood plasmacytoid DCs (pDCs), and type 1 and type 2 conventional DCs (cDC1s and cDC2s). Our data demonstrate that under homeostatic conditions, IDO is selectively expressed by cDC1s. IFN-γ or TLR ligation further increases IDO expression in cDC1s and induces modest expression of the enzyme in cDC2s, but not pDCs. IDO expressed by conventional DCs is functionally active as measured by kynurenine production. Furthermore, IDO activity in TLR-stimulated cDC1s and cDC2s inhibits T cell proliferation in settings were DC-T cell cell-cell contact does not play a role. Selective inhibition of IDO1 with epacadostat, an inhibitor currently tested in clinical trials, rescued T cell proliferation without affecting DC maturation status or their ability to cross-present soluble antigen. Our findings provide new insights into the functional specialization of human blood DC subsets and suggest a possible synergistic enhancement of therapeutic efficacy by combining DC-based cancer vaccines with IDO inhibition.


Assuntos
Células Dendríticas/imunologia , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Linfócitos T/imunologia , Vacinas Anticâncer , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Apresentação Cruzada , Regulação da Expressão Gênica , Homeostase , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/antagonistas & inibidores , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Ativação Linfocitária , Terapia de Alvo Molecular , Especificidade de Órgãos , Oximas/farmacologia , Fenótipo , Sulfonamidas/farmacologia
4.
Biophys J ; 120(13): 2609-2622, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34022237

RESUMO

Cell migration is astoundingly diverse. Molecular signatures, cell-cell interactions, and environmental structures each play their part in shaping cell motion, yielding numerous morphologies and migration modes. Nevertheless, in recent years, a simple unifying law was found to describe cell migration across many different cell types and contexts: faster cells turn less frequently. This universal coupling between speed and persistence (UCSP) was explained by retrograde actin flow from front to back, but it remains unclear how this mechanism generalizes to cells with complex shapes and cells migrating in structured environments, which may not have a well-defined front-to-back orientation. Here, we present an in-depth characterization of an existing cellular Potts model, in which cells polarize dynamically from a combination of local actin dynamics (stimulating protrusions) and global membrane tension along the perimeter (inhibiting protrusions). We first show that the UCSP emerges spontaneously in this model through a cross talk of intracellular mechanisms, cell shape, and environmental constraints, resembling the dynamic nature of cell migration in vivo. Importantly, we find that local protrusion dynamics suffice to reproduce the UCSP-even in cases in which no clear global, front-to-back polarity exists. We then harness the spatial nature of the cellular Potts model to show how cell shape dynamics limit both the speed and persistence a cell can reach and how a rigid environment such as the skin can restrict cell motility even further. Our results broaden the range of potential mechanisms underlying the speed-persistence coupling that has emerged as a fundamental property of migrating cells.


Assuntos
Actinas , Citoesqueleto , Movimento Celular , Forma Celular , Queratinócitos
5.
J Immunol ; 202(11): 3318-3325, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30996001

RESUMO

Fibroblastic reticular cells (FRCs) form a cellular network that serves as the structural backbone of lymph nodes and facilitates lymphocyte migration. In mice, this FRC network has been found to have small-world properties. Using a model based on geographical preferential attachment, we simulated the formation of a variety of cellular networks and show that similar small-world properties robustly emerge under such natural conditions. By estimating the parameters of this model, we generated FRC network representations with realistic topological properties. We found that the topological properties change markedly when the network is expanded from a thin slice to a three-dimensional cube. Typical small-world properties were found to persist as network size was increased. The simulated networks were very similar to two-dimensional and three-dimensional lattice networks. According to the used metrics, these lattice networks also have small-world properties, indicating that lattice likeness is sufficient to become classified as a small-world network. Our results explain why FRC networks have small-world properties and provide a framework for simulating realistic FRC networks.


Assuntos
Fibroblastos/imunologia , Linfonodos/imunologia , Modelos Imunológicos , Animais , Comunicação Celular , Movimento Celular , Simulação por Computador , Imunidade Celular , Camundongos , Modelos Teóricos
6.
J Immunol ; 202(1): 207-217, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30504419

RESUMO

Acute inflammation recruits neutrophils with a band-shaped nucleus to the circulation. This neutrophil population was recently shown to have superior antibacterial capacity. Early recruitment of banded neutrophils to an infection site will likely improve the outcome of the immune response, yet it critically depends on efficient migration. However, the current dogma states that the segmentation of the mature neutrophil nucleus has evolved to favor migration through narrow pores as found between endothelial cells and in the interstitium. Therefore, we hypothesized that banded neutrophils migrate less efficiently than neutrophils with segmented nuclei, whereas recently described neutrophils with hypersegmented nuclei would in turn migrate more efficiently. Acute inflammation was evoked in a human model of experimental endotoxemia to recruit neutrophil subsets with different nuclear segmentation to the circulation. To simulate migration toward an infection site, migration of the subsets was studied in in vitro models of transendothelial migration or interstitial chemokinesis and chemotaxis. In both models, nuclear segmentation did not increase migration speed. In dense collagen matrices, the speed of the hypersegmented neutrophils was even reduced compared with the banded neutrophils. Fluorescence microscopy suggested that the hypersegmented neutrophils displayed reduced rear release and deposited more membrane vesicles. Vice versa, migration through narrow pores did not induce nuclear segmentation in the neutrophils. In conclusion, like neutrophils with a segmented nucleus, the banded subset exhibited efficient migration through narrow pores. These findings suggest that the nucleus does not preclude the banded subset from reaching an infection site.


Assuntos
Núcleo Celular/fisiologia , Células Endoteliais/fisiologia , Endotoxemia/imunologia , Inflamação/imunologia , Neutrófilos/imunologia , Doença Aguda , Adolescente , Adulto , Idoso , Diferenciação Celular , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Doenças do Sistema Imunitário , Transtornos Leucocíticos , Masculino , Pessoa de Meia-Idade , Migração Transendotelial e Transepitelial , Adulto Jovem
7.
Phys Rev Lett ; 124(8): 080601, 2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32167352

RESUMO

The Lévy hypothesis states that inverse square Lévy walks are optimal search strategies because they maximize the encounter rate with sparse, randomly distributed, replenishable targets. It has served as a theoretical basis to interpret a wealth of experimental data at various scales, from molecular motors to animals looking for resources, putting forward the conclusion that many living organisms perform Lévy walks to explore space because of their optimal efficiency. Here we provide analytically the dependence on target density of the encounter rate of Lévy walks for any space dimension d; in particular, this scaling is shown to be independent of the Lévy exponent α for the biologically relevant case d≥2, which proves that the founding result of the Lévy hypothesis is incorrect. As a consequence, we show that optimizing the encounter rate with respect to α is irrelevant: it does not change the scaling with density and can lead virtually to any optimal value of α depending on system dependent modeling choices. The conclusion that observed inverse square Lévy patterns are the result of a common selection process based purely on the kinetics of the search behavior is therefore unfounded.


Assuntos
Modelos Teóricos , Animais , Comportamento Animal , Modelos Biológicos , Movimento
8.
J Immunol ; 201(2): 350-358, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884700

RESUMO

Immunological differences between hosts, such as diverse TCR repertoires, are widely credited for reducing the risk of pathogen spread and adaptation in a population. Within-host immunological diversity might likewise be important for robust pathogen control, but to what extent naive TCR repertoires differ across different locations in the same host is unclear. T cell zones (TCZs) in secondary lymphoid organs provide secluded microenvironmental niches. By harboring distinct TCRs, such niches could enhance within-host immunological diversity. In contrast, rapid T cell migration is expected to dilute such diversity. In this study, we combined tissue microdissection and deep sequencing of the TCR ß-chain to examine the extent to which TCR repertoires differ between TCZs in murine spleens. In the absence of Ag, we found little evidence for differences between TCZs of the same spleen. Yet, 3 d after immunization with sheep RBCs, we observed a >10-fold rise in the number of clones that appeared to localize to individual zones. Remarkably, these differences largely disappeared at 4 d after immunization, when hallmarks of an ongoing immune response were still observed. These data suggest that in the absence of Ag, any repertoire differences observed between TCZs of the same host can largely be attributed to random clone distribution. Upon Ag challenge, TCR repertoires in TCZs first segregate and then homogenize within days. Such "transient mosaic" dynamics could be an important barrier for pathogen adaptation and spread during an immune response.


Assuntos
Linfócitos T/imunologia , Animais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Imunização/métodos , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/imunologia , Ovinos , Baço/imunologia
9.
J Immunol ; 200(1): 347-354, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29141863

RESUMO

Therapies targeting immune checkpoint molecules CTLA-4 and PD-1/PD-L1 have advanced the field of cancer immunotherapy. New mAbs targeting different immune checkpoint molecules, such as TIM3, CD27, and OX40, are being developed and tested in clinical trials. To make educated decisions and design new combination treatment strategies, it is vital to learn more about coexpression of both inhibitory and stimulatory immune checkpoints on individual cells within the tumor microenvironment. Recent advances in multiple immunolabeling and multispectral imaging have enabled simultaneous analysis of more than three markers within a single formalin-fixed paraffin-embedded tissue section, with accurate cell discrimination and spatial information. However, multiplex immunohistochemistry with a maximized number of markers presents multiple difficulties. These include the primary Ab concentrations and order within the multiplex panel, which are of major importance for the staining result. In this article, we report on the development, optimization, and application of an eight-color multiplex immunohistochemistry panel, consisting of PD-1, PD-L1, OX40, CD27, TIM3, CD3, a tumor marker, and DAPI. This multiplex panel allows for simultaneous quantification of five different immune checkpoint molecules on individual cells within different tumor types. This analysis revealed major differences in the immune checkpoint expression patterns across tumor types and individual tumor samples. This method could ultimately, by characterizing the tumor microenvironment of patients who have been treated with different immune checkpoint modulators, form the rationale for the design of immune checkpoint-based immunotherapy in the future.


Assuntos
Anticorpos Monoclonais/uso terapêutico , Imuno-Histoquímica/métodos , Imunoterapia/métodos , Neoplasias/diagnóstico , Microambiente Tumoral , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/metabolismo , Antígeno B7-H1/imunologia , Antígeno B7-H1/metabolismo , Biomarcadores Tumorais/metabolismo , Antígeno CTLA-4/imunologia , Antígeno CTLA-4/metabolismo , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Receptor Celular 2 do Vírus da Hepatite A/metabolismo , Humanos , Neoplasias/imunologia , Neoplasias/terapia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Receptores OX40/imunologia , Receptores OX40/metabolismo , Análise de Célula Única , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
10.
PLoS Biol ; 14(10): e2000827, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27727272

RESUMO

Lymph nodes are meeting points for circulating immune cells. A network of reticular cells that ensheathe a mesh of collagen fibers crisscrosses the tissue in each lymph node. This reticular cell network distributes key molecules and provides a structure for immune cells to move around on. During infections, the network can suffer damage. A new study has now investigated the network's structure in detail, using methods from graph theory. The study showed that the network is remarkably robust to damage: it can still support immune responses even when half of the reticular cells are destroyed. This is a further important example of how network connectivity achieves tolerance to failure, a property shared with other important biological and nonbiological networks.


Assuntos
Linfonodos/citologia , Animais , Humanos , Linfonodos/imunologia
11.
PLoS Pathog ; 11(7): e1005027, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26204259

RESUMO

Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.


Assuntos
Imunidade Adaptativa/imunologia , Anticorpos Antivirais/imunologia , Linfonodos/virologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Envelhecimento , Animais , Encéfalo/imunologia , Citocinas/metabolismo , Linfonodos/imunologia , Camundongos , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/imunologia
13.
PLoS Comput Biol ; 11(10): e1004280, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26488304

RESUMO

Cell migration is a complex process involving many intracellular and extracellular factors, with different cell types adopting sometimes strikingly different morphologies. Modeling realistically behaving cells in tissues is computationally challenging because it implies dealing with multiple levels of complexity. We extend the Cellular Potts Model with an actin-inspired feedback mechanism that allows small stochastic cell rufflings to expand to cell protrusions. This simple phenomenological model produces realistically crawling and deforming amoeboid cells, and gliding half-moon shaped keratocyte-like cells. Both cell types can migrate randomly or follow directional cues. They can squeeze in between other cells in densely populated environments or migrate collectively. The model is computationally light, which allows the study of large, dense and heterogeneous tissues containing cells with realistic shapes and migratory properties.


Assuntos
Actinas/fisiologia , Amoeba/citologia , Amoeba/fisiologia , Movimento Celular/fisiologia , Tamanho Celular , Modelos Biológicos , Animais , Adesão Celular/fisiologia , Simulação por Computador , Humanos , Proteínas Motores Moleculares/fisiologia
14.
Eur J Immunol ; 44(1): 93-102, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24114675

RESUMO

CD4(+) T (helper) cells migrate in huge numbers through lymphoid organs. However, little is known about traffic routes and kinetics of CD4(+) T-cell subsets within different organ compartments. Such information is important because there are indications that CD4(+) T cells may influence the function of microenvironments depending on their developmental stage. Therefore, we investigated the migration of resting (naïve), activated, and recently activated (memory) CD4(+) T cells through the different compartments of the spleen. Resting and recently activated CD4(+) T cells were separated from thoracic duct lymph and activated CD4(+) T cells were generated in vitro by cross-linking the T-cell receptor and CD28. The present study shows that all three CD4(+) T-cell subsets selectively accumulate in the T-cell zone of the spleen. However, only activated T cells induce the formation of germinal centers (GCs) and autoantibodies in rats and mice. Our results suggest that in a two-step process they first activate B cells independent of the T-cell receptor repertoire and CD40 ligand (CD154) expression. The activated B cells then form GCs whereby CD154-dependent T-cell help is needed. Thus, activated T cells may contribute to the development of autoimmune diseases by activating autoreactive B cells in an Ag-independent manner.


Assuntos
Autoanticorpos/metabolismo , Linfócitos T CD4-Positivos/imunologia , Centro Germinativo/imunologia , Baço/imunologia , Subpopulações de Linfócitos T/imunologia , Transferência Adotiva , Animais , Efeito Espectador , Ligante de CD40/genética , Células Cultivadas , Memória Imunológica , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ratos , Ratos Endogâmicos Lew
15.
PLoS Comput Biol ; 10(8): e1003752, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25102014

RESUMO

To fight infections, rare T cells must quickly home to appropriate lymph nodes (LNs), and reliably localize the antigen (Ag) within them. The first challenge calls for rapid trafficking between LNs, whereas the second may require extensive search within each LN. Here we combine simulations and experimental data to investigate which features of random T cell migration within and between LNs allow meeting these two conflicting demands. Our model indicates that integrating signals from multiple random encounters with Ag-presenting cells permits reliable detection of even low-dose Ag, and predicts a kinetic feature of cognate T cell arrest in LNs that we confirm using intravital two-photon data. Furthermore, we obtain the most reliable retention if T cells transit through LNs stochastically, which may explain the long and widely distributed LN dwell times observed in vivo. Finally, we demonstrate that random migration, both between and within LNs, allows recruiting the majority of cognate precursors within a few days for various realistic infection scenarios. Thus, the combination of two-scale stochastic migration and signal integration is an efficient and robust strategy for T cell immune surveillance.


Assuntos
Comunicação Celular/imunologia , Movimento Celular/imunologia , Modelos Imunológicos , Linfócitos T/imunologia , Animais , Biologia Computacional , Humanos , Camundongos , Transdução de Sinais
16.
Proc Natl Acad Sci U S A ; 108(30): 12401-6, 2011 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-21734152

RESUMO

Two-photon microscopy has substantially advanced our understanding of cellular dynamics in the immune system. Cell migration can now be imaged in real time in the living animal. Strikingly, the migration of naive lymphocytes in secondary lymphoid tissue appears predominantly random. It is unclear, however, whether directed migration may escape detection in this random background. Using a combination of mathematical modeling and experimental data, we investigate the extent to which modern two-photon imaging can rule out biologically relevant directed migration. For naive T cells migrating in uninfected lymph nodes (LNs) at average 3D speeds of around 18 µm/min, we rule out uniform directed migration of more than 1.7 µm/min at the 95% confidence level, confirming that T cell migration is indeed mostly random on a timescale of minutes. To investigate whether this finding still holds for longer timescales, we use a 3D simulation of the naive T cell LN transit. A pure random walk predicts a transit time of around 16 h, which is in good agreement with experimental results. A directional bias of only 0.5 µm/min-less than 3% of the cell speed-would already accelerate the transit twofold. These results jointly strengthen the random walk analogy for naive T cell migration in LNs, but they also emphasize that very small deviations from random migration can still be important. Our methods are applicable to cells of any type and can be used to reanalyze existing datasets.


Assuntos
Microscopia de Fluorescência por Excitação Multifotônica/métodos , Linfócitos T/imunologia , Linfócitos T/fisiologia , Transferência Adotiva , Animais , Movimento Celular/imunologia , Movimento Celular/fisiologia , Feminino , Imageamento Tridimensional , Linfonodos/citologia , Linfonodos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Imunológicos , Ratos , Ratos Endogâmicos Lew
17.
Nat Commun ; 15(1): 1632, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395969

RESUMO

Autologous natural dendritic cells (nDCs) treatment can induce tumor-specific immune responses and clinical responses in cancer patients. In this phase III clinical trial (NCT02993315), 148 patients with resected stage IIIB/C melanoma were randomized to adjuvant treatment with nDCs (n = 99) or placebo (n = 49). Active treatment consisted of intranodally injected autologous CD1c+ conventional and plasmacytoid DCs loaded with tumor antigens. The primary endpoint was the 2-year recurrence-free survival (RFS) rate, whereas the secondary endpoints included median RFS, 2-year and median overall survival, adverse event profile, and immunological response The 2-year RFS rate was 36.8% in the nDC treatment group and 46.9% in the control group (p = 0.31). Median RFS was 12.7 months vs 19.9 months, respectively (hazard ratio 1.25; 90% CI: 0.88-1.79; p = 0.29). Median overall survival was not reached in both treatment groups (hazard ratio 1.32; 90% CI: 0.73-2.38; p = 0.44). Grade 3-4 study-related adverse events occurred in 5% and 6% of patients. Functional antigen-specific T cell responses could be detected in 67.1% of patients tested in the nDC treatment group vs 3.8% of patients tested in the control group (p < 0.001). In conclusion, while adjuvant nDC treatment in stage IIIB/C melanoma patients generated specific immune responses and was well tolerated, no benefit in RFS was observed.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Intervalo Livre de Doença , Adjuvantes Imunológicos/uso terapêutico , Células Dendríticas/patologia , Estadiamento de Neoplasias
18.
BMC Bioinformatics ; 14 Suppl 6: S10, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23734948

RESUMO

The Beauchemin model is a simple particle-based description of stochastic lymphocyte migration in tissue, which has been successfully applied to studying immunological questions. In addition to being easy to implement, the model is also to a large extent mathematically tractable. This article provides a comprehensive overview of both existing and new analytical results on the Beauchemin model within a common mathematical framework. Specifically, we derive the motility coefficient, the mean square displacement, and the confinement ratio, and discuss four different methods for simulating biased migration of pre-defined speed. The results provide new insight into published studies and a reference point for future research based on this simple and popular lymphocyte migration model.


Assuntos
Movimento Celular , Linfócitos/citologia , Modelos Biológicos , Animais , Quimiotaxia
19.
Int J Epidemiol ; 52(6): 1968-1974, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37451683

RESUMO

Causal directed acyclic graphs (DAGs) are often used to select variables in a regression model to identify causal effects. Outcome-based sampling studies, such as the 'test-negative design' used to assess vaccine effectiveness, present unique challenges that are not addressed by the common back-door criterion. Here we discuss intuitive, graphical approaches to explain why the common back-door criterion cannot be used for identification of population average causal effects with outcome-based sampling studies. We also describe graphical rules that can be used instead in outcome-based sampling studies when the objective is limited to determining if the causal odds ratio is identifiable, and illustrate recent changes to the free online software Dagitty which incorporate these principles.


Assuntos
Software , Humanos , Fatores de Confusão Epidemiológicos , Interpretação Estatística de Dados , Causalidade
20.
Sci Rep ; 13(1): 9455, 2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37301896

RESUMO

Lymphoid organs are unusual multicellular tissues: they are densely packed, but the lymphocytes trafficking through them are actively moving. We hypothesize that the intriguing ability of lymphocytes to avoid jamming and clogging is in part attributable to the dynamic shape changes that cells undergo when they move. In this work, we test this hypothesis by investigating an idealized system, namely, the flow of self-propelled, oscillating particles passing through a narrow constriction in two dimensions (2D), using numerical simulations. We found that deformation allows particles with these properties to flow through a narrow constriction in conditions when non-deformable particles would not be able to do so. Such a flowing state requires the amplitude and frequency of oscillations to exceed threshold values. Moreover, a resonance leading to the maximum flow rate was found when the oscillation frequency matched the natural frequency of the particle related to its elastic stiffness. To our knowledge, this phenomenon has not been described previously. Our findings could have important implications for understanding and controlling flow in a variety of systems in addition to lymphoid organs, such as granular flows subjected to vibration.


Assuntos
Linfócitos , Modelos Biológicos , Vibração , Linfócitos/citologia , Forma Celular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA