Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Cell ; 158(4): 833-848, 2014 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25126788

RESUMO

Genetically unstable tetraploid cells can promote tumorigenesis. Recent estimates suggest that ∼37% of human tumors have undergone a genome-doubling event during their development. This potentially oncogenic effect of tetraploidy is countered by a p53-dependent barrier to proliferation. However, the cellular defects and corresponding signaling pathways that trigger growth suppression in tetraploid cells are not known. Here, we combine RNAi screening and in vitro evolution approaches to demonstrate that cytokinesis failure activates the Hippo tumor suppressor pathway in cultured cells, as well as in naturally occurring tetraploid cells in vivo. Induction of the Hippo pathway is triggered in part by extra centrosomes, which alter small G protein signaling and activate LATS2 kinase. LATS2 in turn stabilizes p53 and inhibits the transcriptional regulators YAP and TAZ. These findings define an important tumor suppression mechanism and uncover adaptive mechanisms potentially available to nascent tumor cells that bypass this inhibitory regulation.


Assuntos
Citocinese , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral , Centrossomo/metabolismo , Células Epiteliais/metabolismo , Hepatócitos/metabolismo , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Tetraploidia , Proteína Supressora de Tumor p53/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
2.
EMBO J ; 42(9): e112717, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36912152

RESUMO

Intracellular organization is largely mediated by actin turnover. Cellular actin networks continuously assemble and disassemble, while maintaining their overall appearance. This behavior, called "dynamic steady state," allows cells to sense and adapt to their environment. However, how structural stability can be maintained during the constant turnover of a limited actin monomer pool is poorly understood. To answer this question, we developed an experimental system where polystyrene beads are propelled by an actin comet in a microwell containing a limited amount of components. We used the speed and the size of the actin comet tails to evaluate the system's monomer consumption and its lifetime. We established the relative contribution of actin assembly, disassembly, and recycling for a bead movement over tens of hours. Recycling mediated by cyclase-associated protein (CAP) is the key step in allowing the reuse of monomers for multiple assembly cycles. ATP supply and protein aging are also factors that limit the lifetime of actin turnover. This work reveals the balancing mechanism for long-term network assembly with a limited amount of building blocks.


Assuntos
Citoesqueleto de Actina , Actinas , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
3.
Development ; 151(17)2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39136544

RESUMO

Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.


Assuntos
Células-Tronco Hematopoéticas , Humanos , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Hematopoese/fisiologia , Diferenciação Celular , Mitose , Osteoblastos/citologia , Osteoblastos/metabolismo , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Divisão Celular Assimétrica , Lisossomos/metabolismo , Centrossomo/metabolismo , Antígenos CD34/metabolismo , Complexo de Golgi/metabolismo , Divisão Celular
4.
Nature ; 589(7842): 448-455, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33328637

RESUMO

FAT1, which encodes a protocadherin, is one of the most frequently mutated genes in human cancers1-5. However, the role and the molecular mechanisms by which FAT1 mutations control tumour initiation and progression are poorly understood. Here, using mouse models of skin squamous cell carcinoma and lung tumours, we found that deletion of Fat1 accelerates tumour initiation and malignant progression and promotes a hybrid epithelial-to-mesenchymal transition (EMT) phenotype. We also found this hybrid EMT state in FAT1-mutated human squamous cell carcinomas. Skin squamous cell carcinomas in which Fat1 was deleted presented increased tumour stemness and spontaneous metastasis. We performed transcriptional and chromatin profiling combined with proteomic analyses and mechanistic studies, which revealed that loss of function of FAT1 activates a CAMK2-CD44-SRC axis that promotes YAP1 nuclear translocation and ZEB1 expression that stimulates the mesenchymal state. This loss of function also inactivates EZH2, promoting SOX2 expression, which sustains the epithelial state. Our comprehensive analysis identified drug resistance and vulnerabilities in FAT1-deficient tumours, which have important implications for cancer therapy. Our studies reveal that, in mouse and human squamous cell carcinoma, loss of function of FAT1 promotes tumour initiation, progression, invasiveness, stemness and metastasis through the induction of a hybrid EMT state.


Assuntos
Caderinas/deficiência , Transição Epitelial-Mesenquimal/genética , Deleção de Genes , Metástase Neoplásica/genética , Neoplasias/genética , Neoplasias/patologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Caderinas/genética , Caderinas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Progressão da Doença , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Receptores de Hialuronatos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mesoderma/metabolismo , Mesoderma/patologia , Camundongos , Metástase Neoplásica/tratamento farmacológico , Neoplasias/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fenótipo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Proteômica , Fatores de Transcrição SOXB1/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Quinases da Família src/metabolismo
5.
EMBO J ; 41(20): e111631, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-35916262

RESUMO

The orientation of cell polarity depends on the position of the centrosome, the main microtubule-organizing center (MTOC). Microtubules (MTs) transmit pushing forces to the MTOC as they grow against the cell periphery. How the actin network regulates these forces remains unclear. Here, in a cell-free assay, we used purified proteins to reconstitute the interaction of a microtubule aster with actin networks of various architectures in cell-sized microwells. In the absence of actin filaments, MTOC positioning was highly sensitive to variations in microtubule length. The presence of a bulk actin network limited microtubule displacement, and MTOCs were held in place. In contrast, the assembly of a branched actin network along the well edges centered the MTOCs by maintaining an isotropic balance of pushing forces. An anisotropic peripheral actin network caused the MTOC to decenter by focusing the pushing forces. Overall, our results show that actin networks can limit the sensitivity of MTOC positioning to microtubule length and enforce robust MTOC centering or decentering depending on the isotropy of its architecture.


Assuntos
Actinas , Centrossomo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Centrossomo/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(39): e2300416120, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37725653

RESUMO

The shape of cells is the outcome of the balance of inner forces produced by the actomyosin network and the resistive forces produced by cell adhesion to their environment. The specific contributions of contractile, anchoring and friction forces to network deformation rate and orientation are difficult to disentangle in living cells where they influence each other. Here, we reconstituted contractile actomyosin networks in vitro to study specifically the role of the friction forces between the network and its anchoring substrate. To modulate the magnitude and spatial distribution of friction forces, we used glass or lipids surface micropatterning to control the initial shape of the network. We adapted the concentration of Nucleating Promoting Factor on each surface to induce the assembly of actin networks of similar densities and compare the deformation of the network toward the centroid of the pattern shape upon myosin-induced contraction. We found that actin network deformation was faster and more coordinated on lipid bilayers than on glass, showing the resistance of friction to network contraction. To further study the role of the spatial distribution of these friction forces, we designed heterogeneous micropatterns made of glass and lipids. The deformation upon contraction was no longer symmetric but biased toward the region of higher friction. Furthermore, we showed that the pattern of friction could robustly drive network contraction and dominate the contribution of asymmetric distributions of myosins. Therefore, we demonstrate that during contraction, both the active and resistive forces are essential to direct the actin network deformation.


Assuntos
Actinas , Actomiosina , Fricção , Contração Muscular , Bicamadas Lipídicas
7.
J Cell Sci ; 136(22)2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37870087

RESUMO

The crosstalk between the actin network and microtubules is essential for cell polarity. It orchestrates microtubule organization within the cell, driven by the asymmetry of actin architecture along the cell periphery. The physical intertwining of these networks regulates spatial organization and force distribution in the microtubule network. Although their biochemical interactions are becoming clearer, the mechanical aspects remain less understood. To explore this mechanical interplay, we developed an in vitro reconstitution assay to investigate how dynamic microtubules interact with various actin filament structures. Our findings revealed that microtubules can align and move along linear actin filament bundles through polymerization force. However, they are unable to pass through when encountering dense branched actin meshworks, similar to those present in the lamellipodium along the periphery of the cell. Interestingly, immobilizing microtubules through crosslinking with actin or other means allow the buildup of pressure, enabling them to breach these dense actin barriers. This mechanism offers insights into microtubule progression towards the cell periphery, with them overcoming obstacles within the denser parts of the actin network and ultimately contributing to cell polarity establishment.


Assuntos
Actinas , Microtúbulos , Actinas/fisiologia , Microtúbulos/fisiologia , Citoesqueleto de Actina/química , Polaridade Celular , Pseudópodes
8.
Biol Cell ; 116(7): e2400048, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38850178

RESUMO

BACKGROUND INFORMATION: The control of epithelial cell polarity is key to their function. Its dysregulation is a major cause of tissue transformation. In polarized epithelial cells,the centrosome is off-centred toward the apical pole. This asymmetry determines the main orientation of the microtubule network and intra-cellular traffic. However, the mechanism regulating centrosome positioning at the apical pole of polarized epithelial cells is still poorly undertood. RESULTS: In this study we used transcriptomic data from breast cancer cells to identify molecular changes associated with the different stages of tumour transformation. We correlated these changes with variations in centrosome position or with cell progression along the epithelial-to-mesenchymal transition (EMT), a process that involves centrosome repositioning. We found that low levels of epiplakin, desmoplakin and periplakin correlated with centrosome mispositioning in cells that had progressed through EMT or tissue transformation. We further tested the causal role of these plakins in the regulation of centrosome position by knocking down their expression in a non-tumorigenic breast epithelial cell line (MCF10A). The downregulation of periplakin reduced the length of intercellular junction, which was not affected by the downregulation of epiplakin or desmoplakin. However, down-regulating any of them disrupted centrosome polarisation towards the junction without affecting microtubule stability. CONCLUSIONS: Altogether, these results demonstrated that epiplakin, desmoplakin and periplakin are involved in the maintenance of the peripheral position of the centrosome close to inter-cellular junctions. They also revealed that these plakins are downregulated during EMT and breast cancer progression, which are both associated with centrosome mispositioning. SIGNIFICANCE: These results revealed that the down-regulation of plakins and the consequential centrosome mispositioning are key signatures of disorganised cytoskeleton networks, inter-cellular junction weakening, shape deregulation and the loss of polarity in breast cancer cells. These metrics could further be used as a new readouts for early phases of tumoral development.


Assuntos
Polaridade Celular , Centrossomo , Células Epiteliais , Transição Epitelial-Mesenquimal , Plaquinas , Humanos , Centrossomo/metabolismo , Células Epiteliais/metabolismo , Plaquinas/metabolismo , Plaquinas/genética , Feminino , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Microtúbulos/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(31): e2209522119, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35878035

RESUMO

Active cytoskeletal materials in vitro demonstrate self-organizing properties similar to those observed in their counterparts in cells. However, the search to emulate phenomena observed in living matter has fallen short of producing a cytoskeletal network that would be structurally stable yet possess adaptive plasticity. Here, we address this challenge by combining cytoskeletal polymers in a composite where self-assembling microtubules and actin filaments collectively self-organize due to the activity of microtubule-percolating molecular motors. We demonstrate that microtubules spatially organize actin filaments that in turn guide microtubules. The two networks align in an ordered fashion using this feedback loop. In this composite, actin filaments can act as structural memory and, depending on the concentration of the components, microtubules either write this memory or get guided by it. The system is sensitive to external stimuli, suggesting possible autoregulatory behavior in changing mechanochemical environments. We thus establish an artificial active actin-microtubule composite as a system demonstrating architectural stability and plasticity.


Assuntos
Actinas , Microtúbulos , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/metabolismo , Microtúbulos/metabolismo , Estabilidade Proteica
10.
EMBO J ; 39(23): e103957, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33089509

RESUMO

Hematopoietic stem and progenitor cells (HSPC) can differentiate into all hematopoietic lineages to support hematopoiesis. Cells from the myeloid and lymphoid lineages fulfill distinct functions with specific shapes and intra-cellular architectures. The role of cytokines in the regulation of HSPC differentiation has been intensively studied but our understanding of the potential contribution of inner cell architecture is relatively poor. Here, we show that large invaginations are generated by microtubule constraints on the swelling nucleus of human HSPC during early commitment toward the myeloid lineage. These invaginations are associated with a local reduction of lamin B density, local loss of heterochromatin H3K9me3 and H3K27me3 marks, and changes in expression of specific hematopoietic genes. This establishes the role of microtubules in defining the unique lobulated nuclear shape observed in myeloid progenitor cells and suggests that this shape is important to establish the gene expression profile specific to this hematopoietic lineage. It opens new perspectives on the implications of microtubule-generated forces, in the early commitment to the myeloid lineage.


Assuntos
Diferenciação Celular , Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Microtúbulos , Linhagem Celular , Linhagem da Célula , Núcleo Celular/genética , Núcleo Celular/fisiologia , Citocinas , Células-Tronco Hematopoéticas/citologia , Histonas , Humanos , Transcriptoma
11.
Nat Mater ; 22(7): 913-924, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37386067

RESUMO

Microtubules are cytoskeleton components with unique mechanical and dynamic properties. They are rigid polymers that alternate phases of growth and shrinkage. Nonetheless, the cells can display a subset of stable microtubules, but it is unclear whether microtubule dynamics and mechanical properties are related. Recent in vitro studies suggest that microtubules have mechano-responsive properties, being able to stabilize their lattice by self-repair on physical damage. Here we study how microtubules respond to cycles of compressive forces in living cells and find that microtubules become distorted, less dynamic and more stable. This mechano-stabilization depends on CLASP2, which relocates from the end to the deformed shaft of microtubules. This process seems to be instrumental for cell migration in confined spaces. Overall, these results demonstrate that microtubules in living cells have mechano-responsive properties that allow them to resist and even counteract the forces to which they are subjected, being a central mediator of cellular mechano-responses.


Assuntos
Citoesqueleto , Microtúbulos , Movimento Celular , Polímeros , Projetos de Pesquisa
12.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30902847

RESUMO

The centrosome is the main microtubule-organizing centre. It also organizes a local network of actin filaments. However, the precise function of the actin network at the centrosome is not well understood. Here, we show that increasing densities of actin filaments at the centrosome of lymphocytes are correlated with reduced amounts of microtubules. Furthermore, lymphocyte activation resulted in disassembly of centrosomal actin and an increase in microtubule number. To further investigate the direct crosstalk between actin and microtubules at the centrosome, we performed in vitro reconstitution assays based on (i) purified centrosomes and (ii) on the co-micropatterning of microtubule seeds and actin filaments. These two assays demonstrated that actin filaments constitute a physical barrier blocking elongation of nascent microtubules. Finally, we showed that cell adhesion and cell spreading lead to lower densities of centrosomal actin, thus resulting in higher microtubule growth. We therefore propose a novel mechanism, by which the number of centrosomal microtubules is regulated by cell adhesion and actin-network architecture.


Assuntos
Citoesqueleto de Actina/fisiologia , Centrossomo/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Animais , Bovinos , Células Cultivadas , Humanos , Células Jurkat , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo
13.
EMBO J ; 38(11)2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-31015335

RESUMO

Cells going through mitosis undergo precisely timed changes in cell shape and organisation, which serve to ensure the fair partitioning of cellular components into the two daughter cells. These structural changes are driven by changes in actin filament and microtubule dynamics and organisation. While most evidence suggests that the two cytoskeletal systems are remodelled in parallel during mitosis, recent work in interphase cells has implicated the centrosome in both microtubule and actin nucleation, suggesting the potential for regulatory crosstalk between the two systems. Here, by using both in vitro and in vivo assays to study centrosomal actin nucleation as cells pass through mitosis, we show that mitotic exit is accompanied by a burst in cytoplasmic actin filament formation that depends on WASH and the Arp2/3 complex. This leads to the accumulation of actin around centrosomes as cells enter anaphase and to a corresponding reduction in the density of centrosomal microtubules. Taken together, these data suggest that the mitotic regulation of centrosomal WASH and the Arp2/3 complex controls local actin nucleation, which may function to tune the levels of centrosomal microtubules during passage through mitosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Centrossomo/metabolismo , Microtúbulos/metabolismo , Mitose/fisiologia , Células Cultivadas , Citoesqueleto/metabolismo , Células HeLa , Humanos , Interfase/fisiologia , Células Jurkat , Multimerização Proteica/fisiologia
14.
Nat Methods ; 17(1): 50-54, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740821

RESUMO

Spatially controlled cell adhesion on electron microscopy supports remains a bottleneck in specimen preparation for cellular cryo-electron tomography. Here, we describe contactless and mask-free photo-micropatterning of electron microscopy grids for site-specific deposition of extracellular matrix-related proteins. We attained refined cell positioning for micromachining by cryo-focused ion beam milling. Complex micropatterns generated predictable intracellular organization, allowing direct correlation between cell architecture and in-cell three-dimensional structural characterization of the underlying molecular machinery.


Assuntos
Membrana Celular/ultraestrutura , Microscopia Crioeletrônica/instrumentação , Microscopia Crioeletrônica/métodos , Proteínas de Fluorescência Verde/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Imagem Molecular/métodos , Manejo de Espécimes/métodos , Membrana Celular/metabolismo , Células HeLa , Humanos , Reconhecimento Automatizado de Padrão
15.
Nat Mater ; 21(3): 366-377, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34663953

RESUMO

Mechanotransduction is a process by which cells sense the mechanical properties of their surrounding environment and adapt accordingly to perform cellular functions such as adhesion, migration and differentiation. Integrin-mediated focal adhesions are major sites of mechanotransduction and their connection with the actomyosin network is crucial for mechanosensing as well as for the generation and transmission of forces onto the substrate. Despite having emerged as major regulators of cell adhesion and migration, the contribution of microtubules to mechanotransduction still remains elusive. Here, we show that talin- and actomyosin-dependent mechanosensing of substrate rigidity controls microtubule acetylation (a tubulin post-translational modification) by promoting the recruitment of α-tubulin acetyltransferase 1 (αTAT1) to focal adhesions. Microtubule acetylation tunes the mechanosensitivity of focal adhesions and Yes-associated protein (YAP) translocation. Microtubule acetylation, in turn, promotes the release of the guanine nucleotide exchange factor GEF-H1 from microtubules to activate RhoA, actomyosin contractility and traction forces. Our results reveal a fundamental crosstalk between microtubules and actin in mechanotransduction that contributes to mechanosensitive cell adhesion and migration.


Assuntos
Mecanotransdução Celular , Microtúbulos , Citoesqueleto de Actina/metabolismo , Adesão Celular , Adesões Focais/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo
16.
Exp Dermatol ; 32(7): 1096-1107, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37148203

RESUMO

Keloid scars are hypertrophic and proliferating pathological scars extending beyond the initial lesion and without tendency to regression. Usually, keloids are considered and treated as a single entity but clinical observations suggest heterogeneity in keloid morphologies with distinction of superficial/extensive and nodular entities. Within a keloid, heterogeneity could also be detected between superficial and deep dermis or centre and periphery. Focusing on fibroblasts as main actors of keloid formation, we aimed at evaluating intra- and inter-keloid fibroblast heterogeneity by analysing their gene expression and functional capacities (proliferation, migration, traction forces), in order to improve our understanding of keloid pathogenesis. Fibroblasts were obtained from centre, periphery, papillary and reticular dermis from extensive or nodular keloids and were compared to control fibroblasts from healthy skin. Transcriptional profiling of fibroblasts identified a total of 834 differentially expressed genes between nodular and extensive keloids. Quantification of ECM-associated gene expression by RT-qPCR brought evidence that central reticular fibroblasts of nodular keloids are the population which synthesize higher levels of mature collagens, TGFß, HIF1α and αSMA as compared to control skin, suggesting that this central deep region is the nucleus of ECM production with a centrifuge extension in keloids. Although no significant variations were found for basal proliferation, migration of peripheral fibroblasts from extensive keloids was higher than that of central ones and from nodular cells. Moreover, these peripheral fibroblasts from extensive keloids exhibited higher traction forces than central cells, control fibroblasts and nodular ones. Altogether, studying fibroblast features demonstrate keloid heterogeneity, leading to a better understanding of keloid pathophysiology and treatment adaptation.


Assuntos
Queloide , Humanos , Queloide/metabolismo , Pele/metabolismo , Derme/metabolismo , Fibroblastos/metabolismo , Colágeno/metabolismo , Células Cultivadas
17.
Nano Lett ; 22(21): 8584-8591, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36279243

RESUMO

Motility assays use surface-immobilized molecular motors to propel cytoskeletal filaments. They have been widely used to characterize motor properties and their impact on cytoskeletal self-organization. Moreover, the motility assays are a promising class of bioinspired active tools for nanotechnological applications. While these assays involve controlling the filament direction and speed, either as a sensory readout or a functional feature, designing a subtle control embedded in the assay is an ongoing challenge. Here, we investigate the interaction between gliding microtubules and networks of actin filaments. We demonstrate that the microtubule's behavior depends on the actin architecture. Both unbranched and branched actin decelerate microtubule gliding; however, an unbranched actin network provides additional guidance and effectively steers the microtubules. This effect, which resembles the recognition of cortical actin by microtubules, is a conceptually new means of controlling the filament gliding with potential application in the design of active materials and cytoskeletal nanodevices.


Assuntos
Actinas , Microtúbulos , Citoesqueleto , Citoesqueleto de Actina , Nanotecnologia
18.
Nat Mater ; 20(3): 410-420, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077951

RESUMO

Contractile actomyosin networks are responsible for the production of intracellular forces. There is increasing evidence that bundles of actin filaments form interconnected and interconvertible structures with the rest of the network. In this study, we explored the mechanical impact of these interconnections on the production and distribution of traction forces throughout the cell. By using a combination of hydrogel micropatterning, traction force microscopy and laser photoablation, we measured the relaxation of traction forces in response to local photoablations. Our experimental results and modelling of the mechanical response of the network revealed that bundles were fully embedded along their entire length in a continuous and contractile network of cortical filaments. Moreover, the propagation of the contraction of these bundles throughout the entire cell was dependent on this embedding. In addition, these bundles appeared to originate from the alignment and coalescence of thin and unattached cortical actin filaments from the surrounding mesh.


Assuntos
Epitélio Pigmentado da Retina/citologia , Fibras de Estresse/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Actinas/ultraestrutura , Fenômenos Biomecânicos , Linhagem Celular , Microscopia Crioeletrônica , Módulo de Elasticidade , Humanos , Hidrogéis/química , Microscopia de Força Atômica , Modelos Biológicos , Epitélio Pigmentado da Retina/fisiologia
19.
Nat Mater ; 20(6): 883-891, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33479528

RESUMO

Microtubule instability stems from the low energy of tubulin dimer interactions, which sets the growing polymer close to its disassembly conditions. Molecular motors use ATP hydrolysis to produce mechanical work and move on microtubules. This raises the possibility that the mechanical work produced by walking motors can break dimer interactions and trigger microtubule disassembly. We tested this hypothesis by studying the interplay between microtubules and moving molecular motors in vitro. Our results show that molecular motors can remove tubulin dimers from the lattice and rapidly destroy microtubules. We also found that dimer removal by motors was compensated for by the insertion of free tubulin dimers into the microtubule lattice. This self-repair mechanism allows microtubules to survive the damage induced by molecular motors as they move along their tracks. Our study reveals the existence of coupling between the motion of molecular motors and the renewal of the microtubule lattice.


Assuntos
Microtúbulos/metabolismo , Proteínas Motores Moleculares/metabolismo , Movimento , Modelos Biológicos
20.
J Cell Sci ; 132(22)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615968

RESUMO

Cell and tissue morphogenesis depend on the production and spatial organization of tensional forces in the actin cytoskeleton. Actin network architecture is made of distinct modules characterized by specific filament organizations. The assembly of these modules are well described, but their integration in a cellular network is less understood. Here, we investigated the mechanism regulating the interplay between network architecture and the geometry of the extracellular environment of the cell. We found that α-actinin, a filament crosslinker, is essential for network symmetry to be consistent with extracellular microenvironment symmetry. It is required for the interconnection of transverse arcs with radial fibres to ensure an appropriate balance between forces at cell adhesions and across the actin network. Furthermore, this connectivity appeared necessary for the ability of the cell to integrate and to adapt to complex patterns of extracellular cues as they migrate. Our study has unveiled a role of actin filament crosslinking in the spatial integration of mechanical forces that ensures the adaptation of intracellular symmetry axes in accordance with the geometry of extracellular cues.This article has an associated First Person interview with the first author of the paper.


Assuntos
Actinina/metabolismo , Actinas/metabolismo , Humanos , Epitélio Pigmentado da Retina/citologia , Epitélio Pigmentado da Retina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA