Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Am J Physiol Endocrinol Metab ; 324(5): E461-E475, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37053049

RESUMO

Hypogonadism in males confers elevated cardiovascular disease (CVD) risk by unknown mechanisms. Recent radiological evidence suggests that low testosterone (T) is associated with mediobasal hypothalamic (MBH) gliosis, a central nervous system (CNS) cellular response linked to metabolic dysfunction. To address mechanisms linking CNS androgen action to CVD risk, we generated a hypogonadal, hyperlipidemic mouse model with orchiectomy (ORX) combined with hepatic PCSK9 overexpression. After 4 wk of high-fat, high-sucrose diet (HFHS) consumption, despite equal body weights and glucose tolerance, androgen-deficient ORX mice had a more atherogenic lipid profile and increased liver and leukocyte inflammatory signaling compared with sham-operated control mice. Along with these early CVD risk indicators, ORX markedly amplified HFHS-induced astrogliosis in the MBH. Transcriptomic analysis further revealed that ORX and high-fat diet feeding induced upregulation of inflammatory pathways and downregulation of metabolic pathways in hypothalamic astrocytes. To interrogate the role of sex steroid signaling in the CNS in cardiometabolic risk and MBH inflammation, central infusion of T and dihydrotestosterone (DHT) was performed on ORX mice. Central DHT prevented MBH astrogliosis and reduced the liver inflammatory signaling and monocytosis induced by HFHS and ORX; T had a partial protective effect. Finally, a cross-sectional study in 41 adult men demonstrated a positive correlation between radiological evidence of MBH gliosis and plasma lipids. These findings demonstrate that T deficiency in combination with a Western-style diet promotes hypothalamic gliosis concomitant with increased atherogenic risk factors and provide supportive evidence for regulation of lipid metabolism and cardiometabolic risk determinants by the CNS action of sex steroids.NEW & NOTEWORTHY This study provides evidence that hypothalamic gliosis is a key early event through which androgen deficiency in combination with a Western-style diet might lead to cardiometabolic dysregulation in males. Furthermore, this work provides the first evidence in humans of a positive association between hypothalamic gliosis and LDL-cholesterol, advancing our knowledge of CNS influences on CVD risk progression.


Assuntos
Androgênios , Doenças Cardiovasculares , Humanos , Camundongos , Masculino , Animais , Pró-Proteína Convertase 9 , Dieta Hiperlipídica/efeitos adversos , Gliose , Orquiectomia , Estudos Transversais , Fatores de Risco , Di-Hidrotestosterona
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742824

RESUMO

Both hypothalamic microglial inflammation and melanocortin pathway dysfunction contribute to diet-induced obesity (DIO) pathogenesis. Previous studies involving models of altered microglial signaling demonstrate altered DIO susceptibility with corresponding POMC neuron cytological changes, suggesting a link between microglia and the melanocortin system. We addressed this hypothesis using the specific microglial silencing molecule, CX3CL1 (fractalkine), to determine whether reducing hypothalamic microglial activation can restore POMC/melanocortin signaling to protect against DIO. We performed metabolic analyses in high fat diet (HFD)-fed mice with targeted viral overexpression of CX3CL1 in the hypothalamus. Electrophysiologic recording in hypothalamic slices from POMC-MAPT-GFP mice was used to determine the effects of HFD feeding and microglial silencing via minocycline or CX3CL1 on GFP-labeled POMC neurons. Finally, mice with hypothalamic overexpression of CX3CL1 received central treatment with the melanocortin receptor antagonist SHU9119 to determine whether melanocortin signaling is required for the metabolic benefits of CX3CL1. Hypothalamic overexpression of CX3CL1 increased leptin sensitivity and POMC gene expression, while reducing weight gain in animals fed an HFD. In electrophysiological recordings from hypothalamic slice preparations, HFD feeding was associated with reduced POMC neuron excitability and increased amplitude of inhibitory postsynaptic currents. Microglial silencing using minocycline or CX3CL1 treatment reversed these HFD-induced changes in POMC neuron electrophysiologic properties. Correspondingly, blockade of melanocortin receptor signaling in vivo prevented both the acute and chronic reduction in food intake and body weight mediated by CX3CL1. Our results show that suppressing microglial activation during HFD feeding reduces DIO susceptibility via a mechanism involving increased POMC neuron excitability and melanocortin signaling.


Assuntos
Dieta Hiperlipídica , Melanocortinas , Animais , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Melanocortinas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Minociclina/farmacologia , Neurônios/metabolismo , Obesidade/metabolismo , Pró-Opiomelanocortina/genética , Pró-Opiomelanocortina/metabolismo
3.
Proc Natl Acad Sci U S A ; 113(14): E2073-82, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-27001850

RESUMO

Previous studies implicate the hypothalamic ventromedial nucleus (VMN) in glycemic control. Here, we report that selective inhibition of the subset of VMN neurons that express the transcription factor steroidogenic-factor 1 (VMN(SF1) neurons) blocks recovery from insulin-induced hypoglycemia whereas, conversely, activation of VMN(SF1) neurons causes diabetes-range hyperglycemia. Moreover, this hyperglycemic response is reproduced by selective activation of VMN(SF1) fibers projecting to the anterior bed nucleus of the stria terminalis (aBNST), but not to other brain areas innervated by VMN(SF1) neurons. We also report that neurons in the lateral parabrachial nucleus (LPBN), a brain area that is also implicated in the response to hypoglycemia, make synaptic connections with the specific subset of glucoregulatory VMN(SF1) neurons that project to the aBNST. These results collectively establish a physiological role in glucose homeostasis for VMN(SF1) neurons and suggest that these neurons are part of an ascending glucoregulatory LPBN→VMN(SF1)→aBNST neurocircuit.


Assuntos
Glicemia/metabolismo , Neurônios Aferentes/fisiologia , Núcleo Hipotalâmico Ventromedial/fisiologia , Animais , Insulina/administração & dosagem , Camundongos , Núcleo Hipotalâmico Ventromedial/citologia
4.
Diabetologia ; 60(2): 226-236, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27986987

RESUMO

Body weight stability requires homeostatic regulation to balance energy intake and energy expenditure. Research on this system and how it is affected by obesity has largely focused on the role of hypothalamic neurons as integrators of information about long-term fuel storage, short-term nutrient availability and metabolic demand. Recent studies have uncovered glial cells as additional contributors to energy balance regulation and obesity pathogenesis. Beginning with early work on leptin signalling in astrocytes, this area of research rapidly emerged after the discovery of hypothalamic inflammation and gliosis in obese rodents and humans. Current studies have revealed the involvement of a wide variety of glial cell types in the modulation of neuronal activity, regulation of hormone and nutrient availability, and participation in the physiological regulation of feeding behaviour. In addition, one glial type, microglia, has recently been implicated in susceptibility to diet-induced obesity. Together, these exciting new findings deepen our understanding of energy homeostasis regulation and raise the possibility of identifying novel mechanisms that contribute to the pathogenesis of obesity.


Assuntos
Homeostase/fisiologia , Neuroglia/metabolismo , Obesidade/metabolismo , Animais , Peso Corporal/genética , Peso Corporal/fisiologia , Sistema Nervoso Central/metabolismo , Homeostase/genética , Humanos , Hipotálamo/metabolismo , Obesidade/genética
5.
J Neurosci ; 33(45): 17610-6, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24198352

RESUMO

Obesity is a growing public health problem. Although convenient, the notion that obesity is simply a problem of will power is increasingly antiquated. It is becoming clear that complex interactions of environment, neurohormonal systems, and transgenerational effects directly contribute to obesity. This review highlights data presented at the Society for Neuroscience Annual Meeting in San Diego, California in 2013; and although not meant as an exhaustive review of the area, this reivew will explore seemingly disparate areas of research that, when taken as a whole, illuminate the complex topography of the causes and consequences of obesity. We discuss how disruption of the biological clock, a consequence of modern society, can lead to changes in the brain and periphery that lead to obesity. We explore how obesity can actually cause pathological changes within the hypothalamus of the brain (a key regulator of food intake and metabolic homeostasis). How reward circuitry, particularly the ventral tegmental area, responds to insulin and how these effects modulate feeding and the salience of feeding cues are mechanistically described. We also investigate how nutrition may cross generational boundaries to affect the development and function of offspring, underscoring the long reach of metabolic effects. Finally, the role of the endocannabinoid system is emphasized as a critical node in the transduction of many of these effects. Together, this review should provide perspective into the neural causes and consequences of obesity, and hopefully lead to new areas of interdisciplinary research to tackle this important public health epidemic.


Assuntos
Encéfalo/fisiopatologia , Ingestão de Energia/fisiologia , Comportamento Alimentar/fisiologia , Obesidade/fisiopatologia , Animais , Regulação do Apetite/fisiologia , Encéfalo/metabolismo , Homeostase/fisiologia , Humanos , Obesidade/metabolismo , Recompensa
6.
Glia ; 62(1): 17-25, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24166765

RESUMO

The arcuate nucleus (ARC) of the hypothalamus plays a key role in sensing metabolic feedback and regulating energy homeostasis. Recent studies revealed activation of microglia in mice with high-fat diet (HFD)-induced obesity (DIO), suggesting a potential pathophysiological role for inflammatory processes within the hypothalamus. To further investigate the metabolic causes and molecular underpinnings of such glial activation, we analyzed the microglial activity in wild-type (WT), monogenic obese ob/ob (leptin deficient), db/db (leptin-receptor mutation), and Type-4 melanocortin receptor knockout (MC4R KO) mice on either a HFD or on standardized chow (SC) diet. Following HFD exposure, we observed a significant increase in the total number of ARC microglia, immunoreactivity of ionized calcium binding adaptor molecule 1 (iba1-ir), cluster of differentiation 68 (CD68-ir), and ramification of microglial processes. The ob/ob mice had significantly less iba1-ir and ramifications. Leptin replacement rescued these phenomena. The db/db mice had similar iba1-ir comparable with WT mice but had significantly lower CD68-ir and more ramifications than WT mice. After 2 weeks of HFD, ob/ob mice showed an increase of iba1-ir, and db/db mice showed increase of CD68-ir. Obese MC4R KO mice fed a SC diet had comparable iba1-ir and CD68-ir with WT mice but had significantly more ramifications than WT mice. Intriguingly, treatment of DIO mice with glucagon-like peptide-1 receptor agonists reduced microglial activation independent of body weight. Our results show that diet type, adipokines, and gut signals, but not body weight, affect the presence and activity levels of hypothalamic microglia in obesity.


Assuntos
Hormônios/farmacologia , Microglia/metabolismo , Núcleo Supraóptico/citologia , Animais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Peso Corporal/efeitos dos fármacos , Peso Corporal/fisiologia , Citocininas/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Exenatida , Leptina/deficiência , Leptina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Obesidade/induzido quimicamente , Obesidade/fisiopatologia , Peptídeos/farmacologia , Receptor Tipo 4 de Melanocortina/deficiência , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/genética , Transdução de Sinais/efeitos dos fármacos , Peçonhas/farmacologia
7.
Am J Physiol Endocrinol Metab ; 304(11): E1245-50, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23548614

RESUMO

A hallmark of brain injury from infection, vascular, neurodegenerative, and other disorders is the development of gliosis, which can be detected by magnetic resonance imaging (MRI). In rodent models of diet-induced obesity (DIO), high-fat diet (HFD) consumption rapidly induces inflammation and gliosis in energy-regulating regions of the mediobasal hypothalamus (MBH), and recently we reported MRI findings suggestive of MBH gliosis in obese humans. Thus, noninvasive imaging may obviate the need to assess MBH gliosis using histopathological end points, an obvious limitation to human studies. To investigate whether quantitative MRI is a valid tool with which to measure MBH gliosis, we performed analyses, including measurement of T(2) relaxation time from high-field MR brain imaging of mice fed HFD and chow-fed controls. Mean bilateral T(2) relaxation time was prolonged significantly in the MBH, but not in the thalamus or cortex, of HFD-fed mice compared with chow-fed controls. Histological analysis confirmed evidence of increased astrocytosis and microglial accumulation in the MBH of HFD-fed mice compared with controls, and T(2) relaxation times in the right MBH correlated positively with mean intensity of glial fibrillary acidic protein staining (a marker of astrocytes) in HFD-fed animals. Our findings indicate that T(2) relaxation time obtained from high-field MRI is a useful noninvasive measurement of HFD-induced gliosis in the mouse hypothalamus with potential for translation to human studies.


Assuntos
Gliose/patologia , Hipotálamo/patologia , Imageamento por Ressonância Magnética/métodos , Obesidade/patologia , Animais , Composição Corporal/fisiologia , Dieta Hiperlipídica , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo
8.
Am J Physiol Endocrinol Metab ; 304(7): E734-46, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23384771

RESUMO

Recent advances in human brown adipose tissue (BAT) imaging technology have renewed interest in the identification of BAT activators for the treatment of obesity and diabetes. In uncontrolled diabetes (uDM), activation of BAT is implicated in glucose lowering mediated by intracerebroventricular (icv) administration of leptin, which normalizes blood glucose levels in streptozotocin (STZ)-induced diabetic rats. The potent effect of icv leptin to increase BAT glucose uptake in STZ-diabetes is accompanied by the return of reduced plasma thyroxine (T4) levels and BAT uncoupling protein-1 (Ucp1) mRNA levels to nondiabetic controls. We therefore sought to determine whether activation of thyroid hormone receptors is sufficient in and of itself to lower blood glucose levels in STZ-diabetes and whether this effect involves activation of BAT. We found that, although systemic administration of the thyroid hormone (TR)ß-selective agonist GC-1 increases energy expenditure and induces further weight loss in STZ-diabetic rats, it neither increased BAT glucose uptake nor attenuated diabetic hyperglycemia. Even when GC-1 was administered in combination with a ß(3)-adrenergic receptor agonist to mimic sympathetic nervous system activation, glucose uptake was not increased in STZ-diabetic rats, nor was blood glucose lowered, yet this intervention potently activated BAT. Similar results were observed in animals treated with active thyroid hormone (T3) instead of GC-1. Taken together, our data suggest that neither returning normal plasma thyroid hormone levels nor BAT activation has any impact on diabetic hyperglycemia, and that in BAT, increases of Ucp1 gene expression and glucose uptake are readily dissociated from one another in this setting.


Assuntos
Tecido Adiposo Marrom/metabolismo , Diabetes Mellitus Experimental/metabolismo , Glucose/metabolismo , Hiperglicemia/metabolismo , Sistema Nervoso Simpático/metabolismo , Termogênese/fisiologia , Receptores beta dos Hormônios Tireóideos/metabolismo , Acetatos/farmacologia , Tecido Adiposo Marrom/efeitos dos fármacos , Agonistas de Receptores Adrenérgicos beta 3/farmacologia , Animais , Composição Corporal/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Ingestão de Alimentos/efeitos dos fármacos , Hiperglicemia/tratamento farmacológico , Hiperglicemia/etiologia , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Masculino , Proteínas Mitocondriais/efeitos dos fármacos , Proteínas Mitocondriais/metabolismo , Fenóis/farmacologia , Ratos , Ratos Wistar , Receptores Adrenérgicos beta 3/metabolismo , Estreptozocina , Sistema Nervoso Simpático/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Receptores beta dos Hormônios Tireóideos/agonistas , Tri-Iodotironina/farmacologia , Proteína Desacopladora 1
9.
Diabetes ; 72(2): 233-244, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36318114

RESUMO

In rodents, susceptibility to diet-induced obesity requires microglial activation, but the molecular components of this pathway remain incompletely defined. Prostaglandin PGE2 levels increase in the mediobasal hypothalamus during high-fat-diet (HFD) feeding, and the PGE2 receptor EP4 regulates microglial activation state and phagocytic activity, suggesting a potential role for microglial EP4 signaling in obesity pathogenesis. To test the role of microglial EP4 in energy balance regulation, we analyzed the metabolic phenotype in a microglia-specific EP4 knockout (MG-EP4 KO) mouse model. Microglial EP4 deletion markedly reduced weight gain and food intake in response to HFD feeding. Corresponding with this lean phenotype, insulin sensitivity was also improved in HFD-fed MG-EP4 KO mice, though glucose tolerance remained surprisingly unaffected. Mechanistically, EP4-deficient microglia showed an attenuated phagocytic state marked by reduced CD68 expression and fewer contacts with pro-opiomelanocortin (POMC) neuron processes. These cellular changes observed in the MG-EP4 KO mice corresponded with an increased density of POMC neurites extending into the paraventricular nucleus (PVN). These findings reveal that microglial EP4 signaling promotes body weight gain and insulin resistance during HFD feeding. Furthermore, the data suggest that curbing microglial phagocytic function may preserve POMC cytoarchitecture and PVN input to limit overconsumption during diet-induced obesity.


Assuntos
Dinoprostona , Microglia , Obesidade , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Dinoprostona/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Obesidade/genética , Obesidade/metabolismo , Fagocitose , Pró-Opiomelanocortina/metabolismo , Aumento de Peso
10.
Cell Metab ; 35(9): 1613-1629.e8, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572666

RESUMO

Hypothalamic gliosis associated with high-fat diet (HFD) feeding increases susceptibility to hyperphagia and weight gain. However, the body-weight-independent contribution of microglia to glucose regulation has not been determined. Here, we show that reducing microglial nuclear factor κB (NF-κB) signaling via cell-specific IKKß deletion exacerbates HFD-induced glucose intolerance despite reducing body weight and adiposity. Conversely, two genetic approaches to increase microglial pro-inflammatory signaling (deletion of an NF-κB pathway inhibitor and chemogenetic activation through a modified Gq-coupled muscarinic receptor) improved glucose tolerance independently of diet in both lean and obese rodents. Microglial regulation of glucose homeostasis involves a tumor necrosis factor alpha (TNF-α)-dependent mechanism that increases activation of pro-opiomelanocortin (POMC) and other hypothalamic glucose-sensing neurons, ultimately leading to a marked amplification of first-phase insulin secretion via a parasympathetic pathway. Overall, these data indicate that microglia regulate glucose homeostasis in a body-weight-independent manner, an unexpected mechanism that limits the deterioration of glucose tolerance associated with obesity.


Assuntos
Microglia , NF-kappa B , Humanos , Microglia/metabolismo , NF-kappa B/metabolismo , Obesidade/metabolismo , Peso Corporal/fisiologia , Glucose/metabolismo , Hipotálamo/metabolismo , Dieta Hiperlipídica
11.
Front Neuroendocrinol ; 31(1): 79-84, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19822168

RESUMO

Determining the effect of hypothalamic inflammatory signals on energy balance presents a paradox. On the one hand, a large body of work has identified inflammatory signaling in the hypothalamus as an essential mediator of the sickness response--the anorexia, cachexia, fever, inactivity, lethargy, anhedonia and adipsia that are triggered by systemic inflammatory stimuli and promote negative energy balance. On the other hand, numerous recent studies implicate inflammatory activation within the hypothalamus as a key factor whereby high-fat diets--and saturated fats in particular--cause central leptin and insulin resistance and thereby promote the defense of elevated body weight. This paradox will likely remain unresolved until several issues have been addressed. Firstly, the hypothalamus--unlike many peripheral inflamed tissues--is an extremely heterogeneous tissue comprised of astrocytes, oligodendrocytes, microglia, endothelial cells, ependymal cells as well as numerous neuronal subgroups. Determining exactly which cells activate defined inflammatory signals in response to a particular stimulus--i.e. sepsis vs. nutrient excess--may yield critical clues. Secondly, for the sake of simplicity many studies evaluate inflammation as an on/off phenomenon. More realistically, inflammatory signaling occurs as a cascade or cycle that changes and progresses over time. Accordingly, even within the same cell type, the low-grade, chronic signal induced by nutrient excess may invoke a different cascade of signals than a strong, acute signal such as sepsis. In addition, because tolerance can develop to certain inflammatory mediators, physiological outcomes may not correlate with early biochemical markers. Lastly, the neuroanatomical location, magnitude, and duration of the inflammatory stimulus can undoubtedly influence the net CNS response. Rigorously evaluating the progression of the inflammatory signaling cascade within specific hypothalamic cell types is a key next step towards resolving the paradox surrounding the effect of inflammatory signaling on energy homeostasis.


Assuntos
Metabolismo Energético/fisiologia , Homeostase/fisiologia , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Animais , Gorduras na Dieta/administração & dosagem , Ingestão de Alimentos/fisiologia , Humanos , Resistência à Insulina , Leptina , Melanocortinas , Obesidade , Transdução de Sinais , Aumento de Peso
12.
Proc Natl Acad Sci U S A ; 105(1): 335-40, 2008 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-18162555

RESUMO

In the neurogenic phase of CNS development, the proliferating progenitors are found medially within the neuroepithelium. The adherens junctions on the apical membrane of proliferating neural progenitors allow for cell-cell adhesion and medial stratification. In contrast, differentiating neuronal precursors delaminate and migrate laterally, establishing the laminar layers. Apical adherens junctions also establish the apical-basal polarity in neural progenitors, which in turn is postulated to lead to asymmetric inheritance of cell fate determinants during neurogenic divisions. The signaling pathways and cellular mechanisms that regulate the assembly and asymmetric localization of adherens junctions in neural progenitors remain elusive. Here we show that atypical PKCzeta/lambda (aPKCzeta/lambda) localizes at the apical membrane of proliferating neural stem cells, but not postmitotic neuronal precursors, in the developing chicken neural tube. This precise subcellular compartmentalization of the kinase activity provides an instructive signal for apical assembly of adherens junctions in a PI3K, Rac/Cdc42 signaling-dependent pathway. Apical aPKCzeta coordinates neural stem cell proliferation and the overall stratification of cell types within the neural tube.


Assuntos
Junções Aderentes/metabolismo , Neurônios/metabolismo , Proteína Quinase C/metabolismo , Células-Tronco/citologia , Animais , Encéfalo/embriologia , Diferenciação Celular , Membrana Celular/metabolismo , Imuno-Histoquímica/métodos , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Tubo Neural/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Células-Tronco/metabolismo
13.
Am J Physiol Endocrinol Metab ; 299(1): E47-53, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20371733

RESUMO

In peripheral tissues, the link between obesity and insulin resistance involves low-grade inflammation induced by macrophage activation and proinflammatory cytokine signaling. Since proinflammatory cytokines are also induced in the hypothalamus of animals placed on a high-fat (HF) diet and can inhibit neuronal signal transduction pathways required for normal energy homeostasis, hypothalamic inflammation is hypothesized to contribute to the pathogenesis of diet-induced obesity (DIO). We addressed this hypothesis by perturbing the inflammatory milieu of the hypothalamus in adult male Wistar rats using intracerebroventricular (icv) administration of interleukin-4 (IL-4), a Th2 cytokine that promotes alternative activation (M2) of macrophages and microglia. During HF feeding, icv IL-4 administration increased hypothalamic proinflammatory cytokine gene expression and caused excess weight gain. Intracerebroventricular pretreatment with PS1145, an inhibitor of IKKbeta (a key intracellular mediator of inflammatory signaling), blocked both IL-4 effects, suggesting a causal relationship between IL-4-induced weight gain and hypothalamic inflammation. These observations add to growing evidence linking hypothalamic inflammation to obesity pathogenesis.


Assuntos
Gorduras na Dieta/administração & dosagem , Metabolismo Energético/fisiologia , Hipotálamo/fisiopatologia , Inflamação/fisiopatologia , Interleucina-4/farmacologia , Obesidade/fisiopatologia , Animais , Glicemia/análise , Peso Corporal/fisiologia , Gorduras na Dieta/metabolismo , Compostos Heterocíclicos com 3 Anéis/farmacologia , Quinase I-kappa B/antagonistas & inibidores , Insulina/sangue , Leptina/sangue , Ativação de Macrófagos/fisiologia , Masculino , Piridinas/farmacologia , Ratos , Ratos Wistar , Organismos Livres de Patógenos Específicos
15.
Neuron ; 41(3): 337-50, 2004 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-14766174

RESUMO

LIM homeobox genes have a prominent role in the regulation of neuronal subtype identity and distinguish motor neuron subclasses in the embryonic spinal cord. We have investigated the role of Isl-class LIM homeodomain proteins in motor neuron diversification using mouse genetic methods. All spinal motor neuron subtypes initially express both Isl1 and Isl2, but Isl2 is rapidly downregulated by visceral motor neurons. Mouse embryos lacking Isl2 function exhibit defects in the migration and axonal projections of thoracic level motor neurons that appear to reflect a cell-autonomous switch from visceral to somatic motor neuron character. Additional genetic mutations that reduce or eliminate both Isl1 and Isl2 activity result in more pronounced defects in visceral motor neuron generation and erode somatic motor neuron character. Thus, an early phase of high Isl expression and activity in newly generated motor neurons permits the diversification of visceral and somatic motor neuron subtypes in the developing spinal cord.


Assuntos
Proteínas de Homeodomínio/fisiologia , Mitose/fisiologia , Neurônios Motores/fisiologia , Medula Espinal/citologia , Vísceras , Acetilcolinesterase/metabolismo , Envelhecimento , Aminoácidos/metabolismo , Animais , Axônios/enzimologia , Southern Blotting , Contagem de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Células Cultivadas , Embrião de Galinha , Embrião de Mamíferos , Feminino , Gânglios Espinais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Proteínas com Homeodomínio LIM , Óperon Lac , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitose/genética , Neurônios Motores/classificação , Mutação , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico Sintase Tipo I , Nervos Periféricos/metabolismo , Medula Espinal/embriologia , Medula Espinal/transplante , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Vísceras/embriologia
16.
Nat Commun ; 8: 14556, 2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28223698

RESUMO

Female mice are less susceptible to the negative metabolic consequences of high-fat diet feeding than male mice, for reasons that are incompletely understood. Here we identify sex-specific differences in hypothalamic microglial activation via the CX3CL1-CX3CR1 pathway that mediate the resistance of female mice to diet-induced obesity. Female mice fed a high-fat diet maintain CX3CL1-CX3CR1 levels while male mice show reductions in both ligand and receptor expression. Female Cx3cr1 knockout mice develop 'male-like' hypothalamic microglial accumulation and activation, accompanied by a marked increase in their susceptibility to diet-induced obesity. Conversely, increasing brain CX3CL1 levels in male mice through central pharmacological administration or virally mediated hypothalamic overexpression converts them to a 'female-like' metabolic phenotype with reduced microglial activation and body-weight gain. These data implicate sex differences in microglial activation in the modulation of energy homeostasis and identify CX3CR1 signalling as a potential therapeutic target for the treatment of obesity.


Assuntos
Receptor 1 de Quimiocina CX3C/metabolismo , Microglia/metabolismo , Microglia/patologia , Obesidade/metabolismo , Obesidade/patologia , Caracteres Sexuais , Transdução de Sinais , Animais , Receptor 1 de Quimiocina CX3C/deficiência , Proteínas de Ligação ao Cálcio/metabolismo , Dieta Hiperlipídica , Suscetibilidade a Doenças , Estrogênios/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Feminino , Hipotálamo/patologia , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Fenótipo , Aumento de Peso
17.
Diabetes ; 66(4): 920-934, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28073831

RESUMO

Effectors of the phosphoinositide 3-kinase (PI3K) signal transduction pathway contribute to the hypothalamic regulation of energy and glucose homeostasis in divergent ways. Here we show that central nervous system (CNS) action of the PI3K signaling intermediate atypical protein kinase C (aPKC) constrains food intake, weight gain, and glucose intolerance in both rats and mice. Pharmacological inhibition of CNS aPKC activity acutely increases food intake and worsens glucose tolerance in chow-fed rodents and causes excess weight gain during high-fat diet (HFD) feeding. Similarly, selective deletion of the aPKC isoform Pkc-λ in proopiomelanocortin (POMC) neurons disrupts leptin action, reduces melanocortin content in the paraventricular nucleus, and markedly increases susceptibility to obesity, glucose intolerance, and insulin resistance specifically in HFD-fed male mice. These data implicate aPKC as a novel regulator of energy and glucose homeostasis downstream of the leptin-PI3K pathway in POMC neurons.


Assuntos
Ingestão de Alimentos/genética , Intolerância à Glucose/genética , Glucose/metabolismo , Isoenzimas/genética , Neurônios/metabolismo , Obesidade/genética , Proteína Quinase C/genética , Aumento de Peso/genética , Animais , Dieta Hiperlipídica , Ingestão de Alimentos/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Intolerância à Glucose/metabolismo , Hipotálamo/metabolismo , Resistência à Insulina , Leptina/metabolismo , Masculino , Melanocortinas/metabolismo , Camundongos , Obesidade/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Pró-Opiomelanocortina/efeitos dos fármacos , Pró-Opiomelanocortina/metabolismo , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Ratos , Transdução de Sinais , Aumento de Peso/efeitos dos fármacos
18.
Cell Metab ; 26(1): 185-197.e3, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28683286

RESUMO

Dietary excess triggers accumulation of pro-inflammatory microglia in the mediobasal hypothalamus (MBH), but the components of this microgliosis and its metabolic consequences remain uncertain. Here, we show that microglial inflammatory signaling determines the immunologic response of the MBH to dietary excess and regulates hypothalamic control of energy homeostasis in mice. Either pharmacologically depleting microglia or selectively restraining microglial NF-κB-dependent signaling sharply reduced microgliosis, an effect that includes prevention of MBH entry by bone-marrow-derived myeloid cells, and greatly limited diet-induced hyperphagia and weight gain. Conversely, forcing microglial activation through cell-specific deletion of the negative NF-κB regulator A20 induced spontaneous MBH microgliosis and cellular infiltration, reduced energy expenditure, and increased both food intake and weight gain even in absence of a dietary challenge. Thus, microglial inflammatory activation, stimulated by dietary excess, orchestrates a multicellular hypothalamic response that mediates obesity susceptibility, providing a mechanistic rationale for non-neuronal approaches to treat metabolic diseases.


Assuntos
Regulação do Apetite , Metabolismo Energético , Hipotálamo/imunologia , Inflamação/imunologia , Microglia/imunologia , Obesidade/imunologia , Animais , Hiperfagia/imunologia , Hiperfagia/metabolismo , Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , Hipotálamo/fisiopatologia , Inflamação/metabolismo , Inflamação/fisiopatologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Células Mieloides/imunologia , Células Mieloides/metabolismo , Células Mieloides/patologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Obesidade/metabolismo , Obesidade/fisiopatologia , Transdução de Sinais
19.
Curr Opin Endocrinol Diabetes Obes ; 22(5): 325-30, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26192704

RESUMO

PURPOSE OF REVIEW: Hypothalamic inflammation and gliosis are recently discovered mechanisms that may contribute to obesity pathogenesis. Current research in this area suggests that investigation of these central nervous system responses may provide opportunities to develop new weight loss treatments. RECENT FINDINGS: In rodents, hypothalamic inflammation and gliosis occur rapidly with high-fat diet consumption prior to significant weight gain. In addition, sensitivity or resistance to diet-induced obesity in rodents generally correlates with the presence or absence of hypothalamic inflammation and reactive gliosis (brain response to injury). Moreover, functional interventions that increase or decrease inflammation in neurons and glia correspondingly alter diet-associated weight gain. However, some conflicting data have recently emerged that question the contribution of hypothalamic inflammation to obesity pathogenesis. Nevertheless, several studies have detected gliosis and disrupted connectivity in obese humans, highlighting the potential translational importance of this mechanism. SUMMARY: There is growing evidence that obesity is associated with brain inflammation in humans, particularly in the hypothalamus where its presence may disrupt body weight control and glucose homeostasis. More work is needed to determine whether this response is common in human obesity and to what extent it can be manipulated for therapeutic benefit.


Assuntos
Encefalite/patologia , Gliose/patologia , Hipotálamo/patologia , Obesidade/patologia , Animais , Dieta Hiperlipídica/efeitos adversos , Encefalite/etiologia , Gliose/etiologia , Glucose/metabolismo , Humanos
20.
Endocrinology ; 155(8): 2858-67, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24914942

RESUMO

Gliosis, the activation of astrocyte and microglial cell populations, is a hallmark of central nervous system injury and is detectable using either immunohistochemistry or in vivo magnetic resonance imaging (MRI). Obesity in rodents and humans is associated with gliosis of the arcuate nucleus, a key hypothalamic region for the regulation of energy homeostasis and adiposity, but whether this response is permanent or reversible is unknown. Here we combine terminal immunohistochemistry analysis with serial, noninvasive MRI to characterize the progression and reversibility of hypothalamic gliosis in high-fat diet (HFD)-fed mice. The effects of HFD feeding for 16 weeks to increase body weight and adiposity relative to chow were nearly normalized after the return to chow feeding for an additional 4 weeks in the diet-reversal group. Mice maintained on the HFD for the full 20-week study period experienced continued weight gain associated with the expected increases of astrocyte and microglial activation in the arcuate nucleus, but these changes were not observed in the diet-reversal group. The proopiomelanocortin neuron number did not differ between groups. Although MRI demonstrated a positive correlation between body weight, adiposity, and the gliosis-associated T2 signal in the mediobasal hypothalamus, it did not detect the reversal of gliosis among the HFD-fed mice after the return to chow diet. We conclude that hypothalamic gliosis associated with 16-week HFD feeding is largely reversible in rodents, consistent with the reversal of the HFD-induced obesity phenotype, and extend published evidence regarding the utility of MRI as a tool for studying obesity-associated hypothalamic gliosis in vivo.


Assuntos
Núcleo Arqueado do Hipotálamo , Dieta Hiperlipídica/efeitos adversos , Gliose/etiologia , Doenças Hipotalâmicas/etiologia , Doenças Hipotalâmicas/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Adiposidade , Animais , Ingestão de Alimentos , Doenças Hipotalâmicas/prevenção & controle , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/dietoterapia , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA