Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2218127120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37314935

RESUMO

Reduced nitrogen (N) is central to global biogeochemistry, yet there are large uncertainties surrounding its sources and rate of cycling. Here, we present observations of gas-phase urea (CO(NH2)2) in the atmosphere from airborne high-resolution mass spectrometer measurements over the North Atlantic Ocean. We show that urea is ubiquitous in the lower troposphere in the summer, autumn, and winter but was not detected in the spring. The observations suggest that the ocean is the primary emission source, but further studies are required to understand the responsible mechanisms. Urea is also observed aloft due to long-range transport of biomass-burning plumes. These observations alongside global model simulations point to urea being an important, and currently unaccounted for, component of reduced-N to the remote marine atmosphere. Airborne transfer of urea between nutrient-rich and -poor parts of the ocean can occur readily and could impact ecosystems and oceanic uptake of carbon dioxide, with potentially important climate implications.

2.
Chemosphere ; 270: 129435, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33412356

RESUMO

A nationwide lockdown was imposed in India due to COVID-19 pandemic in five phases from 25th March to May 31, 2020. The lockdown restricted major anthropogenic activities, primarily vehicular and industrial, thereby reducing the particulate matter concentration. This work investigates the variation in Black Carbon (BC) concentration and its sources (primarily Fossil Fuel (ff) burning and Biomass Burning (bb)) over Delhi from 18th February to July 31, 2020, covering one month of pre-lockdown phase, all the lockdown phases, and two months of successive lockdown relaxations. The daily average BC concentration varied from 0.22 to 16.92 µg/m3, with a mean value of 3.62 ± 2.93 µg/m3. During Pre-Lockdown (PL, 18th Feb-24th March 2020), Lockdown-1 (L1, 25th March-14th April 2020), Lockdown-2 (L2, 15th April-3rd May 2020), Lockdown-3 (L3, 4th-17th May 2020), Lockdown-4 (L4, 18th-31st May 2020), Unlock-1 (UN1, June 2020), and Unlock-2 (UN2, July 2020) the average BC concentrations were 7.93, 1.73, 2.59, 3.76, 3.26, 2.07, and 2.70 µg/m3, respectively. During the lockdown and unlock phases, BC decreased up to 78% compared to the PL period. The BC source apportionment studies show that fossil fuel burning was the dominant BC source during the entire sampling period. From L1 to UN2 an increasing trend in BCff contribution was observed (except L3) due to the successive relaxations given to anthropogenic activities. BCff contribution dipped briefly during L3 due to the intensive crop residue burning events in neighboring states. CWT analysis showed that local emission sources were the dominant contributors to BC concentration over Delhi.


Assuntos
Poluentes Atmosféricos , COVID-19 , Aerossóis/análise , Poluentes Atmosféricos/análise , Carbono/análise , Controle de Doenças Transmissíveis , Monitoramento Ambiental , Humanos , Índia , Pandemias , Material Particulado/análise , SARS-CoV-2
3.
Sci Total Environ ; 745: 140924, 2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-32738681

RESUMO

Delhi is one of the most polluted cities worldwide and a comprehensive understanding and deeper insight into the air pollution and its sources is of high importance. We report 5 months of highly time-resolved measurements of non-refractory PM2.5 and black carbon (BC). Additionally, source apportionment based on positive matrix factorization (PMF) of the organic aerosol (OA) fraction is presented. The highest pollution levels are observed during winter in December/January. During that time, also uniquely high chloride concentrations are measured, which are sometimes even the most dominant NR-species in the morning hours. With increasing temperature, the total PM2.5 concentration decreases steadily, whereas the chloride concentrations decrease sharply. The concentrations measured in May are roughly 6 times lower than in December/January. PMF analysis resolves two primary factors, namely hydrocarbon-like (traffic-related) OA (HOA) and solid fuel combustion OA (SFC-OA), and one or two secondary factors depending on the season. The uncertainties of the PMF analysis are assessed by combining the random a-value approach and the bootstrap resampling technique of the PMF input. The uncertainties for the resolved factors range from ±18% to ±19% for HOA, ±7% to ±19% for SFC-OA and ±6 % to ±11% for the OOAs. The average correlation of HOA with equivalent black carbon from traffic (eBCtr) is R2 = 0.40, while SFC-OA has a correlation of R2 = 0.78 with equivalent black carbon from solid fuel combustion (eBCsf). Anthracene (m/z 178) and pyrene (m/z 202) (PAHs) are mostly explained by SFC-OA and follow its diurnal trend (R2 = 0.98 and R2 = 0.97). The secondary oxygenated aerosols are dominant during daytime. The average contribution during the afternoon hours (1 pm-5 pm) is 59% to the total OA mass, with contributions up to 96% in May. In contrast, the primary sources are more important during nighttime: the mean nightly contribution (22 pm-3 am) to the total OA mass is 48%, with contributions up to 88% during some episodes in April.

4.
Sci Rep ; 6: 37735, 2016 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-27883083

RESUMO

Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA