Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
FASEB J ; 31(12): 5592-5608, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28842429

RESUMO

Recent research has widely investigated the anti-inflammatory effects of mesenchymal stem cells and their secretory products, termed the secretome, in the treatment of multiple sclerosis (MS). The present study examined the capacity of the conditioned medium (CM) from human periodontal ligament stem cells (hPLSCs) under hypoxia (H-hPDLSCs-CM) to suppress experimental autoimmune encephalomyelitis (EAE), a murine model of MS. To induce EAE, female C57BL/6 mice were immunized with myelin oligodendroglial glycoprotein peptide35-55 At the onset of symptoms, H-hPDLSCs-CM was infused via the tail vein of mice. Our results demonstrate the efficacy of H-hPDLSCs-CM treatment in diminishing clinical and histologic disease score. A key finding from this study is the marked expression of anti-inflammatory cytokine IL-37, paralleled by the suppression of proinflammatory cytokines in mice with EAE that were treated with H-hPDLSCs-CM. In addition, a consequent modulation of oxidative stress, autophagic, and apoptotic markers was observed in mice with EAE after hPDLSCs-CM administration. In addition, to provide additional evidence of the molecular mechanisms that underlie H-hPDLSCs-CM, we investigated its therapeutic action in scratch injury-exposed NSC-34 neurons, an in vitro model of injury. This model reproduces severe inflammation and oxidative stress conditions as observed after EAE damage. In vitro results corroborate the ability of hPDLSCs-CM to modulate inflammatory, oxidative stress, and apoptotic pathways. Taken together, our findings suggest H-hPDLSCs-CM as a new pharmacologic opportunity for the management of MS.-Giacoppo, S., Thangavelu, S. R., Diomede, F., Bramanti, P., Conti, P., Trubiani, O., Mazzon, E. Anti-inflammatory effects of hypoxia-preconditioned human periodontal ligament cell secretome in an experimental model of multiple sclerosis: a key role of IL-37.


Assuntos
Meios de Cultivo Condicionados/farmacologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Ligamento Periodontal/citologia , Células-Tronco/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Imuno-Histoquímica , Interleucina-1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligamento Periodontal/metabolismo , Medula Espinal/metabolismo
2.
Eur J Histochem ; 61(3): 2826, 2017 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-29046054

RESUMO

Periodontitis is a chronic oral inflammatory disease produced by bacteria. Gingival retraction and bone and connective tissues resorption are the hallmarks of this disease. Chronic periodontitis may contribute to the risk of onset or progression of neuroinflammatory pathological conditions, such as Alzheimer's disease. The main goal of the present study was to investigate if the role of epigenetic modulations is involved in periodontitis using human periodontal ligament stem cells (hPDLSCs) as an in vitro model system. hPDLSCs were treated with lipopolysaccharide of Porphyromonas gingivalis and the expression of proteins associated with DNA methylation and histone acetylation, such as DNMT1 and p300, respectively, and inflammatory transcription factor NF-kB, were examined. Immunofluorescence, Western blot and next generation sequencing results demonstrated that P. gingivalis lipopolysaccharide significantly reduced DNA methylase DNMT1, while it markedly upregulated the level of histone acetyltransferase p300 and NF-kB in hPDLSCs. Our results showed that P. gingivalis lipopolysaccharide markedly regulate the genes involved in epigenetic mechanism, which may result in inflammation induction. We propose that P. gingivalis lipopolysaccharide-treated hPDLSCs could be a potential in vitro model system to study epigenetics modulations associated with periodontitis, which might be helpful to identify novel biomarkers linked to this oral inflammatory disease.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Ligamento Periodontal , Células-Tronco/efeitos dos fármacos , Sobrevivência Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Inflamação , Ligamento Periodontal/citologia , Porphyromonas gingivalis/química , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Células-Tronco/citologia , Fatores de Transcrição de p300-CBP/genética , Fatores de Transcrição de p300-CBP/metabolismo
3.
Ann Neurosci ; 18(2): 48-55, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25205921

RESUMO

BACKGROUND: Amyotrophic Lateral Sclerosis, in which motor neurons degenerate, leading to paralysis, not only the affected motor neurons, but the surrounding non-neuronal cells also contribute significantly to the disease. However, the disease mechanism is not known. PURPOSE: In this study we have addressed the disease mechanism by expressing the ALS associated mutant SOD1(G37R) in the motor neurons (mMN) and astrocytes (mA) cell lines. METHODS: A series of cell culture assays, immunostaining, RT-PCR and Western blot analysis were performed. RESULTS: We noticed impairments in both these cell types. The mMN motor neurons were insensitive to forskolin, a known activator of adenylate cyclase, which leads to motor neuron death. In addition, less number of mMN were positive for phosphorylated neurofilament-H (pNFH) unlike the normal motor neurons. Similarly, the mutant SOD1 expressing astrocytes (mA) had two impairments: The inability to activate the oxidative stress protection and the absence of secretory factor(s). Normal astrocytes and their secreted factors could restore the pNFH in the mMN but not the mA. In addition, we show that pNFH restoration is a specific function since the insensitivity of mMN to forskolin could be rescued by neither normal astrocytes nor their secreted factors. CONCLUSION: Thus we demonstrate some of the abnormalities caused by the ALS associated mutant SOD1(G37R) and a potential way, to reverse an abnormality through cell replacement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA