Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Cell ; 168(6): 953-955, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283068

RESUMO

Modern metabolism would not work without ATP and phosphate, but in primordial biochemical networks, energy currencies might have been simpler. Goldford et al. report a novel systems approach to reconstructing energetics in ancient metabolism, with very interesting results.


Assuntos
Trifosfato de Adenosina/metabolismo , Metabolismo Energético
2.
Annu Rev Biochem ; 79: 507-36, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20235826

RESUMO

Most methanogenic archaea reduce CO(2) with H(2) to CH(4). For the activation of H(2), they use different [NiFe]-hydrogenases, namely energy-converting [NiFe]-hydrogenases, heterodisulfide reductase-associated [NiFe]-hydrogenase or methanophenazine-reducing [NiFe]-hydrogenase, and F(420)-reducing [NiFe]-hydrogenase. The energy-converting [NiFe]-hydrogenases are phylogenetically related to complex I of the respiratory chain. Under conditions of nickel limitation, some methanogens synthesize a nickel-independent [Fe]-hydrogenase (instead of F(420)-reducing [NiFe]-hydrogenase) and by that reduce their nickel requirement. The [Fe]-hydrogenase harbors a unique iron-guanylylpyridinol cofactor (FeGP cofactor), in which a low-spin iron is ligated by two CO, one C(O)CH(2)-, one S-CH(2)-, and a sp(2)-hybridized pyridinol nitrogen. Ligation of the iron is thus similar to that of the low-spin iron in the binuclear active-site metal center of [NiFe]- and [FeFe]-hydrogenases. Putative genes for the synthesis of the FeGP cofactor have been identified. The formation of methane from 4 H(2) and CO(2) catalyzed by methanogenic archaea is being discussed as an efficient means to store H(2).


Assuntos
Archaea/enzimologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Níquel , Archaea/metabolismo , Hidrogenase/química , Hidrogenase/genética
3.
Annu Rev Microbiol ; 69: 1-30, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26488272

RESUMO

Early parental influence led me first to medical school, but after developing a passion for biochemistry and sensing the need for a deeper foundation, I changed to chemistry. During breaks between semesters, I worked in various biochemistry labs to acquire a feeling for the different areas of investigation. The scientific puzzle that fascinated me most was the metabolism of the anaerobic bacterium Clostridium kluyveri, which I took on in 1965 in Karl Decker's lab in Freiburg, Germany. I quickly realized that little was known about the biochemistry of strict anaerobes such as clostridia, methanogens, acetogens, and sulfate-reducing bacteria and that these were ideal model organisms to study fundamental questions of energy conservation, CO2 fixation, and the evolution of metabolic pathways. My passion for anaerobes was born then and is unabated even after 50 years of study.


Assuntos
Bactérias Anaeróbias/metabolismo , Bioquímica/história , Microbiologia/história , Anaerobiose , Bactérias Anaeróbias/classificação , Alemanha , História do Século XX , História do Século XXI
4.
Chem Rev ; 118(7): 3862-3886, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29561602

RESUMO

There are two types of electron bifurcation (EB), either quinone- or flavin-based (QBEB/FBEB), that involve reduction of a quinone or flavin by a two-electron transfer and two reoxidations by a high- and low-potential one-electron acceptor with a reactive semiquinone intermediate. In QBEB, the reduced low-potential acceptor (cytochrome b) is exclusively used to generate ΔµH+. In FBEB, the "energy-rich" low-potential reduced ferredoxin or flavodoxin has dual function. It can give rise to ΔµH+/Na+ via a ferredoxin:NAD reductase (Rnf) or ferredoxin:proton reductase (Ech) or conducts difficult reductions such as CO2 to CO. The QBEB membrane complexes are similar in structure and function and occur in all domains of life. In contrast, FBEB complexes are soluble and occur only in strictly anaerobic bacteria and archaea (FixABCX being an exception). The FBEB complexes constitute a group consisting of four unrelated families that contain (1) electron-transferring flavoproteins (EtfAB), (2) NAD(P)H dehydrogenase (NuoF homologues), (3) heterodisulfide reductase (HdrABC) or HdrABC homologues, and (4) NADH-dependent ferredoxin:NADP reductase (NfnAB). The crystal structures and electron transport of EtfAB-butyryl-CoA dehydrogenase and NfnAB are compared with those of complex III of the respiratory chain (cytochrome bc1), whereby unexpected common features have become apparent.


Assuntos
Flavoproteínas Transferidoras de Elétrons/química , Flavinas/química , Flavoproteínas/química , Quinonas/química , Archaea/enzimologia , Bactérias/enzimologia , Citocromos b/química , Transporte de Elétrons , Ferredoxina-NADP Redutase/química , NADPH Desidrogenase/química , Oxirredução , Oxirredutases/química , Conformação Proteica , Termodinâmica
5.
Biochemistry ; 58(52): 5198-5220, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30951290

RESUMO

Methyl-coenzyme M reductase (MCR) catalyzes the methane-forming step in methanogenic archaea. The active enzyme harbors the nickel(I) hydrocorphin coenzyme F-430 as a prosthetic group and catalyzes the reversible reduction of methyl-coenzyme M (CH3-S-CoM) with coenzyme B (HS-CoM) to methane and CoM-S-S-CoB. MCR is also involved in anaerobic methane oxidation in reverse of methanogenesis and most probably in the anaerobic oxidation of ethane, propane, and butane. The challenging question is how the unreactive CH3-S thioether bond in methyl-coenzyme M and the even more unreactive C-H bond in methane and the other hydrocarbons are anaerobically cleaved. A key to the answer is the negative redox potential (Eo') of the Ni(II)F-430/Ni(I)F-430 couple below -600 mV and the radical nature of Ni(I)F-430. However, the negative one-electron redox potential is also the Achilles heel of MCR; it makes the nickel enzyme one of the most O2-sensitive enzymes known to date. Even under physiological conditions, the Ni(I) in MCR is oxidized to the Ni(II) or Ni(III) states, e.g., when in the cells the redox potential (E') of the CoM-S-S-CoB/HS-CoM and HS-CoB couple (Eo' = -140 mV) gets too high. Methanogens therefore harbor an enzyme system for the reactivation of inactivated MCR in an ATP-dependent reduction reaction. Purification of active MCR in the Ni(I) oxidation state is very challenging and has been achieved in only a few laboratories. This perspective reviews the function, structure, and properties of MCR, what is known and not known about the catalytic mechanism, how the inactive enzyme is reactivated, and what remains to be discovered.


Assuntos
Metano/metabolismo , Níquel , Oxirredutases/química , Oxirredutases/metabolismo , Anaerobiose , Biocatálise , Metano/química , Oxirredução , Oxirredutases/antagonistas & inibidores
6.
Proc Natl Acad Sci U S A ; 113(22): 6172-7, 2016 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-27140643

RESUMO

Ruminants, such as cows, sheep, and goats, predominantly ferment in their rumen plant material to acetate, propionate, butyrate, CO2, and methane. Whereas the short fatty acids are absorbed and metabolized by the animals, the greenhouse gas methane escapes via eructation and breathing of the animals into the atmosphere. Along with the methane, up to 12% of the gross energy content of the feedstock is lost. Therefore, our recent report has raised interest in 3-nitrooxypropanol (3-NOP), which when added to the feed of ruminants in milligram amounts persistently reduces enteric methane emissions from livestock without apparent negative side effects [Hristov AN, et al. (2015) Proc Natl Acad Sci USA 112(34):10663-10668]. We now show with the aid of in silico, in vitro, and in vivo experiments that 3-NOP specifically targets methyl-coenzyme M reductase (MCR). The nickel enzyme, which is only active when its Ni ion is in the +1 oxidation state, catalyzes the methane-forming step in the rumen fermentation. Molecular docking suggested that 3-NOP preferably binds into the active site of MCR in a pose that places its reducible nitrate group in electron transfer distance to Ni(I). With purified MCR, we found that 3-NOP indeed inactivates MCR at micromolar concentrations by oxidation of its active site Ni(I). Concomitantly, the nitrate ester is reduced to nitrite, which also inactivates MCR at micromolar concentrations by oxidation of Ni(I). Using pure cultures, 3-NOP is demonstrated to inhibit growth of methanogenic archaea at concentrations that do not affect the growth of nonmethanogenic bacteria in the rumen.


Assuntos
Metano/química , Simulação de Acoplamento Molecular , Animais , Euryarchaeota/metabolismo , Oxirredutases/química , Rúmen/metabolismo , Ruminantes/metabolismo
7.
Extremophiles ; 21(4): 733-742, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28493148

RESUMO

To obtain new insights into community compositions of hyperthermophilic microorganisms, defined as having optimal growth temperatures of 80 °C and above, sediment and water samples were taken from two shallow marine hydrothermal vents (I and II) with temperatures of 100 °C at Vulcano Island, Italy. A combinatorial approach of denaturant gradient gel electrophoresis (DGGE) and metagenomic sequencing was used for microbial community analyses of the samples. In addition, enrichment cultures, growing anaerobically on selected polysaccharides such as starch and cellulose, were also analyzed by the combinatorial approach. Our results showed a high abundance of hyperthermophilic archaea, especially in sample II, and a comparable diverse archaeal community composition in both samples. In particular, the strains of the hyperthermophilic anaerobic genera Staphylothermus and Thermococcus, and strains of the aerobic hyperthermophilic genus Aeropyrum, were abundant. Regarding the bacterial community, ε-Proteobacteria, especially the genera Sulfurimonas and Sulfurovum, were highly abundant. The microbial diversity of the enrichment cultures changed significantly by showing a high dominance of archaea, particularly the genera Thermococcus and Palaeococcus, depending on the carbon source and the selected temperature.


Assuntos
Archaea/classificação , Bactérias/classificação , Fontes Hidrotermais/microbiologia , Biologia Marinha , Archaea/genética , Bactérias/genética , Itália , RNA Ribossômico 16S/genética
8.
Nature ; 481(7379): 98-101, 2011 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-22121022

RESUMO

The anaerobic oxidation of methane (AOM) with sulphate, an area currently generating great interest in microbiology, is accomplished by consortia of methanotrophic archaea (ANME) and sulphate-reducing bacteria. The enzyme activating methane in methanotrophic archaea has tentatively been identified as a homologue of methyl-coenzyme M reductase (MCR) that catalyses the methane-forming step in methanogenic archaea. Here we report an X-ray structure of the 280 kDa heterohexameric ANME-1 MCR complex. It was crystallized uniquely from a protein ensemble purified from consortia of microorganisms collected with a submersible from a Black Sea mat catalysing AOM with sulphate. Crystals grown from the heterogeneous sample diffract to 2.1 Å resolution and consist of a single ANME-1 MCR population, demonstrating the strong selective power of crystallization. The structure revealed ANME-1 MCR in complex with coenzyme M and coenzyme B, indicating the same substrates for MCR from methanotrophic and methanogenic archaea. Differences between the highly similar structures of ANME-1 MCR and methanogenic MCR include a F(430) modification, a cysteine-rich patch and an altered post-translational amino acid modification pattern, which may tune the enzymes for their functions in different biological contexts.


Assuntos
Archaea/enzimologia , Biocatálise , Metano/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Água do Mar/microbiologia , Anaerobiose , Archaea/isolamento & purificação , Archaea/metabolismo , Mar Negro , Domínio Catalítico , Coenzimas/química , Coenzimas/metabolismo , Cristalografia por Raios X , Cisteína/metabolismo , Expedições , Modelos Moleculares , Oxirredução , Conformação Proteica , Navios , Sulfatos/metabolismo
9.
Z Naturforsch C J Biosci ; 72(7-8): 237-243, 2017 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-28710885

RESUMO

The biochemist Lothar Jaenicke died on 29 December 2015, aged 92 years old. The last time I saw him was at his 90th birthday on 14 September 2013, at the occasion of which his colleagues at the Universität zu Köln (Cologne) in Germany had organized a symposium to honor him.


Assuntos
Bioquímica/história , Metabolismo Energético , Alemanha , História do Século XX , História do Século XXI
10.
J Biol Chem ; 290(36): 21985-95, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26139605

RESUMO

NADH-dependent reduced ferredoxin:NADP oxidoreductase (NfnAB) is found in the cytoplasm of various anaerobic bacteria and archaea. The enzyme reversibly catalyzes the endergonic reduction of ferredoxin with NADPH driven by the exergonic transhydrogenation from NADPH onto NAD(+). Coupling is most probably accomplished via the mechanism of flavin-based electron bifurcation. To understand this process on a structural basis, we heterologously produced the NfnAB complex of Thermotoga maritima in Escherichia coli, provided kinetic evidence for its bifurcating behavior, and determined its x-ray structure in the absence and presence of NADH. The structure of NfnAB reveals an electron transfer route including the FAD (a-FAD), the [2Fe-2S] cluster of NfnA and the FAD (b-FAD), and the two [4Fe-4S] clusters of NfnB. Ferredoxin is presumably docked onto NfnB close to the [4Fe-4S] cluster distal to b-FAD. NAD(H) binds to a-FAD and NADP(H) consequently to b-FAD, which is positioned in the center of the NfnAB complex and the site of electron bifurcation. Arg(187) is hydrogen-bonded to N5 and O4 of the bifurcating b-FAD and might play a key role in adjusting a low redox potential of the FADH(•)/FAD pair required for ferredoxin reduction. A mechanism of FAD-coupled electron bifurcation by NfnAB is proposed.


Assuntos
Proteínas de Bactérias/metabolismo , Ferredoxina-NADP Redutase/metabolismo , Flavinas/metabolismo , NAD/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sítios de Ligação , Cristalografia por Raios X , Transporte de Elétrons , Elétrons , Eletroforese em Gel de Poliacrilamida , Ferredoxina-NADP Redutase/química , Ferredoxina-NADP Redutase/genética , Ferredoxinas/química , Ferredoxinas/metabolismo , Flavinas/química , Ligação de Hidrogênio , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , NAD/química , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Thermotoga maritima/enzimologia , Thermotoga maritima/genética
11.
Nature ; 465(7298): 606-8, 2010 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-20520712

RESUMO

Large amounts (estimates range from 70 Tg per year to 300 Tg per year) of the potent greenhouse gas methane are oxidized to carbon dioxide in marine sediments by communities of methanotrophic archaea and sulphate-reducing bacteria, and thus are prevented from escaping into the atmosphere. Indirect evidence indicates that the anaerobic oxidation of methane might proceed as the reverse of archaeal methanogenesis from carbon dioxide with the nickel-containing methyl-coenzyme M reductase (MCR) as the methane-activating enzyme. However, experiments showing that MCR can catalyse the endergonic back reaction have been lacking. Here we report that purified MCR from Methanothermobacter marburgensis converts methane into methyl-coenzyme M under equilibrium conditions with apparent V(max) (maximum rate) and K(m) (Michaelis constant) values consistent with the observed in vivo kinetics of the anaerobic oxidation of methane with sulphate. This result supports the hypothesis of 'reverse methanogenesis' and is paramount to understanding the still-unknown mechanism of the last step of methanogenesis. The ability of MCR to cleave the particularly strong C-H bond of methane without the involvement of highly reactive oxygen-derived intermediates is directly relevant to catalytic C-H activation, currently an area of great interest in chemistry.


Assuntos
Biocatálise , Metano/biossíntese , Metano/metabolismo , Methanobacteriaceae/enzimologia , Níquel/metabolismo , Oxirredutases/metabolismo , Anaerobiose , Gases/metabolismo , Cinética , Mesna/análogos & derivados , Mesna/metabolismo , Metilação , Modelos Biológicos , Oxirredução , Temperatura
12.
J Bacteriol ; 197(18): 2965-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26148714

RESUMO

UNLABELLED: Most acetogens can reduce CO2 with H2 to acetic acid via the Wood-Ljungdahl pathway, in which the ATP required for formate activation is regenerated in the acetate kinase reaction. However, a few acetogens, such as Clostridium autoethanogenum, Clostridium ljungdahlii, and Clostridium ragsdalei, also form large amounts of ethanol from CO2 and H2. How these anaerobes with a growth pH optimum near 5 conserve energy has remained elusive. We investigated this question by determining the specific activities and cofactor specificities of all relevant oxidoreductases in cell extracts of H2/CO2-grown C. autoethanogenum. The activity studies were backed up by transcriptional and mutational analyses. Most notably, despite the presence of six hydrogenase systems of various types encoded in the genome, the cells appear to contain only one active hydrogenase. The active [FeFe]-hydrogenase is electron bifurcating, with ferredoxin and NADP as the two electron acceptors. Consistently, most of the other active oxidoreductases rely on either reduced ferredoxin and/or NADPH as the electron donor. An exception is ethanol dehydrogenase, which was found to be NAD specific. Methylenetetrahydrofolate reductase activity could only be demonstrated with artificial electron donors. Key to the understanding of this energy metabolism is the presence of membrane-associated reduced ferredoxin:NAD(+) oxidoreductase (Rnf), of electron-bifurcating and ferredoxin-dependent transhydrogenase (Nfn), and of acetaldehyde:ferredoxin oxidoreductase, which is present with very high specific activities in H2/CO2-grown cells. Based on these findings and on thermodynamic considerations, we propose metabolic schemes that allow, depending on the H2 partial pressure, the chemiosmotic synthesis of 0.14 to 1.5 mol ATP per mol ethanol synthesized from CO2 and H2. IMPORTANCE: Ethanol formation from syngas (H2, CO, and CO2) and from H2 and CO2 that is catalyzed by bacteria is presently a much-discussed process for sustainable production of biofuels. Although the process is already in use, its biochemistry is only incompletely understood. The most pertinent question is how the bacteria conserve energy for growth during ethanol formation from H2 and CO2, considering that acetyl coenzyme A (acetyl-CoA), is an intermediate. Can reduction of the activated acetic acid to ethanol with H2 be coupled with the phosphorylation of ADP? Evidence is presented that this is indeed possible, via both substrate-level phosphorylation and electron transport phosphorylation. In the case of substrate-level phosphorylation, acetyl-CoA reduction to ethanol proceeds via free acetic acid involving acetaldehyde:ferredoxin oxidoreductase (carboxylate reductase).


Assuntos
Dióxido de Carbono/metabolismo , Clostridium/metabolismo , Metabolismo Energético/fisiologia , Etanol/metabolismo , Hidrogênio/metabolismo , Ácido Acético/química , Ácido Acético/metabolismo , Acetilcoenzima A/metabolismo , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Clostridium/classificação , Transporte de Elétrons , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Proteínas de Membrana , Oxirredutases/genética , Oxirredutases/metabolismo , Fosfoproteínas
13.
J Bacteriol ; 196(18): 3303-14, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25002540

RESUMO

Moorella thermoacetica can grow with H2 and CO2, forming acetic acid from 2 CO2 via the Wood-Ljungdahl pathway. All enzymes involved in this pathway have been characterized to date, except for methylenetetrahydrofolate reductase (MetF). We report here that the M. thermoacetica gene that putatively encodes this enzyme, metF, is part of a transcription unit also containing the genes hdrCBA, mvhD, and metV. MetF copurified with the other five proteins encoded in the unit in a hexaheteromeric complex with an apparent molecular mass in the 320-kDa range. The 40-fold-enriched preparation contained per mg protein 3.1 nmol flavin adenine dinucleotide (FAD), 3.4 nmol flavin mononucleotide (FMN), and 110 nmol iron, almost as predicted from the primary structure of the six subunits. It catalyzed the reduction of methylenetetrahydrofolate with reduced benzyl viologen but not with NAD(P)H in either the absence or presence of oxidized ferredoxin. It also catalyzed the reversible reduction of benzyl viologen with NADH (diaphorase activity). Heterologous expression of the metF gene in Escherichia coli revealed that the subunit MetF contains one FMN rather than FAD. MetF exhibited 70-fold-higher methylenetetrahydrofolate reductase activity with benzyl viologen when produced together with MetV, which in part shows sequence similarity to MetF. Heterologously produced HdrA contained 2 FADs and had NAD-specific diaphorase activity. Our results suggested that the physiological electron donor for methylenetetrahydrofolate reduction in M. thermoacetica is NADH and that the exergonic reduction of methylenetetrahydrofolate with NADH is coupled via flavin-based electron bifurcation with the endergonic reduction of an electron acceptor, whose identity remains unknown.


Assuntos
Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica/fisiologia , Metilenotetra-Hidrofolato Redutase (NADPH2)/metabolismo , Moorella/enzimologia , Proteínas de Bactérias/genética , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Moorella/genética , Moorella/metabolismo
14.
J Bacteriol ; 196(22): 3840-52, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25157086

RESUMO

Ruminococcus albus 7 has played a key role in the development of the concept of interspecies hydrogen transfer. The rumen bacterium ferments glucose to 1.3 acetate, 0.7 ethanol, 2 CO2, and 2.6 H2 when growing in batch culture and to 2 acetate, 2 CO2, and 4 H2 when growing in continuous culture in syntrophic association with H2-consuming microorganisms that keep the H2 partial pressure low. The organism uses NAD(+) and ferredoxin for glucose oxidation to acetyl coenzyme A (acetyl-CoA) and CO2, NADH for the reduction of acetyl-CoA to ethanol, and NADH and reduced ferredoxin for the reduction of protons to H2. Of all the enzymes involved, only the enzyme catalyzing the formation of H2 from NADH remained unknown. Here, we report that R. albus 7 grown in batch culture on glucose contained, besides a ferredoxin-dependent [FeFe]-hydrogenase (HydA2), a ferredoxin- and NAD-dependent electron-bifurcating [FeFe]-hydrogenase (HydABC) that couples the endergonic formation of H2 from NADH to the exergonic formation of H2 from reduced ferredoxin. Interestingly, hydA2 is adjacent to the hydS gene, which is predicted to encode an [FeFe]-hydrogenase with a C-terminal PAS domain. We showed that hydS and hydA2 are part of a larger transcriptional unit also harboring putative genes for a bifunctional acetaldehyde/ethanol dehydrogenase (Aad), serine/threonine protein kinase, serine/threonine protein phosphatase, and a redox-sensing transcriptional repressor. Since HydA2 and Aad are required only when R. albus grows at high H2 partial pressures, HydS could be a H2-sensing [FeFe]-hydrogenase involved in the regulation of their biosynthesis.


Assuntos
Proteínas de Bactérias/metabolismo , Formiato Desidrogenases/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Ruminococcus/metabolismo , Acetilcoenzima A/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Proteínas de Bactérias/genética , Transporte de Elétrons , Fermentação , Formiato Desidrogenases/genética , Regulação Enzimológica da Expressão Gênica/fisiologia , Glucose/metabolismo , Ferro/metabolismo , NAD , NADP/metabolismo , Piruvato Sintase/genética , Piruvato Sintase/metabolismo
15.
Biochim Biophys Acta ; 1827(2): 94-113, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22800682

RESUMO

The review describes four flavin-containing cytoplasmatic multienzyme complexes from anaerobic bacteria and archaea that catalyze the reduction of the low potential ferredoxin by electron donors with higher potentials, such as NAD(P)H or H(2) at ≤ 100 kPa. These endergonic reactions are driven by concomitant oxidation of the same donor with higher potential acceptors such as crotonyl-CoA, NAD(+) or heterodisulfide (CoM-S-S-CoB). The process called flavin-based electron bifurcation (FBEB) can be regarded as a third mode of energy conservation in addition to substrate level phosphorylation (SLP) and electron transport phosphorylation (ETP). FBEB has been detected in the clostridial butyryl-CoA dehydrogenase/electron transferring flavoprotein complex (BcdA-EtfBC), the multisubunit [FeFe]hydrogenase from Thermotoga maritima (HydABC) and from acetogenic bacteria, the [NiFe]hydrogenase/heterodisulfide reductase (MvhADG-HdrABC) from methanogenic archaea, and the transhydrogenase (NfnAB) from many Gram positive and Gram negative bacteria and from anaerobic archaea. The Bcd/EtfBC complex that catalyzes electron bifurcation from NADH to the low potential ferredoxin and to the high potential crotonyl-CoA has already been studied in some detail. The bifurcating protein most likely is EtfBC, which in each subunit (ßγ) contains one FAD. In analogy to the bifurcating complex III of the mitochondrial respiratory chain and with the help of the structure of the human ETF, we propose a conformational change by which γ-FADH(-) in EtfBC approaches ß-FAD to enable the bifurcating one-electron transfer. The ferredoxin reduced in one of the four electron bifurcating reactions can regenerate H(2) or NADPH, reduce CO(2) in acetogenic bacteria and methanogenic archaea, or is converted to ΔµH(+)/Na(+) by the membrane-associated enzyme complexes Rnf and Ech, whereby NADH and H(2) are recycled, respectively. The mainly bacterial Rnf complexes couple ferredoxin oxidation by NAD(+) with proton/sodium ion translocation and the more diverse energy converting [NiFe]hydrogenases (Ech) do the same, whereby NAD(+) is replaced by H(+). Many organisms also use Rnf and Ech in the reverse direction to reduce ferredoxin driven by ΔµH(+)/Na(+). Finally examples are shown, in which the four bifurcating multienzyme complexes alone or together with Rnf and Ech are integrated into energy metabolisms of nine anaerobes. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.


Assuntos
Elétrons , Metabolismo Energético , Ferredoxinas/metabolismo , Sódio/metabolismo , Citoplasma/enzimologia , Flavinas/metabolismo , Humanos , Transporte de Íons , Oxirredução , Prótons
16.
Proc Natl Acad Sci U S A ; 108(7): 2981-6, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21262829

RESUMO

In methanogenic archaea growing on H(2) and CO(2) the first step in methanogenesis is the ferredoxin-dependent endergonic reduction of CO(2) with H(2) to formylmethanofuran and the last step is the exergonic reduction of the heterodisulfide CoM-S-S-CoB with H(2) to coenzyme M (CoM-SH) and coenzyme B (CoB-SH). We recently proposed that in hydrogenotrophic methanogens the two reactions are energetically coupled via the cytoplasmic MvhADG/HdrABC complex. It is reported here that the purified complex from Methanothermobacter marburgensis catalyzes the CoM-S-S-CoB-dependent reduction of ferredoxin with H(2). Per mole CoM-S-S-CoB added, 1 mol of ferredoxin (Fd) was reduced, indicating an electron bifurcation coupling mechanism: 2H(2) + Fd(OX) + CoM-S-S-CoB-->Fd(red)(2-) + CoM-SH + CoB-SH + 2H(+). This stoichiometry of coupling is consistent with an ATP gain per mole methane from 4 H(2) and CO(2) of near 0.5 deduced from an H(2)-threshold concentration of 8 Pa and a growth yield of up to 3 g/mol methane.


Assuntos
Dióxido de Carbono/metabolismo , Dissulfetos/metabolismo , Ferredoxinas/metabolismo , Hidrogênio/metabolismo , Metano/biossíntese , Methanobacteriaceae/metabolismo , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Mesna/metabolismo , Metronidazol , Oxirredução , Fosfotreonina/análogos & derivados , Fosfotreonina/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
J Bacteriol ; 195(6): 1267-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23316038

RESUMO

Moorella thermoacetica was long the only model organism used to study the biochemistry of acetogenesis from CO(2). Depending on the growth substrate, this Gram-positive bacterium can either form H(2) or consume it. Despite the importance of H(2) in its metabolism, a hydrogenase from the organism has not yet been characterized. We report here the purification and properties of an electron-bifurcating [FeFe]-hydrogenase from M. thermoacetica and show that the cytoplasmic enzyme efficiently catalyzes both H(2) formation and H(2) uptake. The purified heterotrimeric iron-sulfur flavoprotein (HydABC) catalyzed the coupled reduction of ferredoxin (Fd) and NAD(+) with H(2) at 55 °C at pH 7.5 at a specific rate of about 100 µmol min(-1) mg protein(-1) and the reverse reaction, the coupled reduction of protons to H(2) with reduced ferredoxin and NADH, at a specific rate of about 10 µmol min(-1) mg protein(-1) in the stoichiometry Fd(ox) + NAD(+) + 2H(2) Fd(red)(2-) + NADH + 3H(+). When ferredoxin from Clostridium pasteurianum, NAD(+), and the enzyme were incubated at pH 7.0 under 100% H(2) in the gas phase (E(0)' = -414 mV), more than 95% of the ferredoxin (E(0)' = -400 mV) was reduced, which indicated that ferredoxin reduction with H(2) is driven by the exergonic reduction of NAD(+) (E(0)' = -320 mV) with H(2). In the absence of NAD(+), ferredoxin was not reduced. We identified the genes encoding HydABC within the transcriptional unit hydCBAX and mapped the transcription start site.


Assuntos
Ferredoxinas/metabolismo , Flavoproteínas/metabolismo , Hidrogênio/metabolismo , Hidrogenase/genética , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Moorella/enzimologia , Biocatálise , Ferredoxinas/química , Flavoproteínas/genética , Flavoproteínas/isolamento & purificação , Genes Bacterianos , Hidrogênio/química , Hidrogenase/química , Hidrogenase/isolamento & purificação , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/isolamento & purificação , Dados de Sequência Molecular , Moorella/genética , Moorella/metabolismo , NAD/química , NAD/metabolismo , Sítio de Iniciação de Transcrição
18.
J Bacteriol ; 195(19): 4373-86, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23893107

RESUMO

Flavin-based electron bifurcation is a recently discovered mechanism of coupling endergonic to exergonic redox reactions in the cytoplasm of anaerobic bacteria and archaea. Among the five electron-bifurcating enzyme complexes characterized to date, one is a heteromeric ferredoxin- and NAD-dependent [FeFe]-hydrogenase. We report here a novel electron-bifurcating [FeFe]-hydrogenase that is NADP rather than NAD specific and forms a complex with a formate dehydrogenase. The complex was found in high concentrations (6% of the cytoplasmic proteins) in the acetogenic Clostridium autoethanogenum autotrophically grown on CO, which was fermented to acetate, ethanol, and 2,3-butanediol. The purified complex was composed of seven different subunits. As predicted from the sequence of the encoding clustered genes (fdhA/hytA-E) and from chemical analyses, the 78.8-kDa subunit (FdhA) is a selenocysteine- and tungsten-containing formate dehydrogenase, the 65.5-kDa subunit (HytB) is an iron-sulfur flavin mononucleotide protein harboring the NADP binding site, the 51.4-kDa subunit (HytA) is the [FeFe]-hydrogenase proper, and the 18.1-kDa (HytC), 28.6-kDa (HytD), 19.9-kDa (HytE1), and 20.1-kDa (HytE2) subunits are iron-sulfur proteins. The complex catalyzed both the reversible coupled reduction of ferredoxin and NADP(+) with H2 or formate and the reversible formation of H2 and CO2 from formate. We propose the complex to have two functions in vivo, namely, to normally catalyze CO2 reduction to formate with NADPH and reduced ferredoxin in the Wood-Ljungdahl pathway and to catalyze H2 formation from NADPH and reduced ferredoxin when these redox mediators get too reduced during unbalanced growth of C. autoethanogenum on CO (E0' = -520 mV).


Assuntos
Proteínas de Bactérias/metabolismo , Monóxido de Carbono/metabolismo , Clostridium/enzimologia , Formiato Desidrogenases/metabolismo , Hidrogenase/metabolismo , Proteínas Ferro-Enxofre/metabolismo , NADP/metabolismo , Proteínas de Bactérias/genética , Técnicas Bacteriológicas , Clostridium/genética , Clostridium/metabolismo , Transporte de Elétrons , Formiato Desidrogenases/genética , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulação Enzimológica da Expressão Gênica , Hidrogenase/genética , Ferro/metabolismo , Proteínas Ferro-Enxofre/genética , Dados de Sequência Molecular
19.
J Am Chem Soc ; 135(40): 14975-84, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24004388

RESUMO

The nickel enzyme methyl-coenzyme M reductase (MCR) catalyzes two important transformations in the global carbon cycle: methane formation and its reverse, the anaerobic oxidation of methane. MCR uses the methyl thioether methyl-coenzyme M (CH3-S-CH2CH2-SO3(-), Me-S-CoM) and the thiol coenzyme B (CoB-SH) as substrates and converts them reversibly to methane and the corresponding heterodisulfide (CoB-S-S-CoM). The catalytic mechanism is still unknown. Here, we present isotope effects for this reaction in both directions, catalyzed by the enzyme isolated from Methanothermobacter marburgensis . For methane formation, a carbon isotope effect ((12)CH3-S-CoM/(13)CH3-S-CoM) of 1.04 ± 0.01 was measured, showing that breaking of the C-S bond in the substrate Me-S-CoM is the rate-limiting step. A secondary isotope effect of 1.19 ± 0.01 per D in the methyl group of CD3-S-CoM indicates a geometric change of the methyl group from tetrahedral to trigonal planar upon going to the transition state of the rate-limiting step. This finding is consistent with an almost free methyl radical in the highest transition state. Methane activation proceeds with a primary isotope effect of 2.44 ± 0.22 for the C-H vs C-D bond breakage and a secondary isotope effect corresponding to 1.17 ± 0.05 per D. These values are consistent with isotope effects reported for oxidative cleavage/reductive coupling occurring at transition metal centers during C-H activation but are also in the range expected for the radical substitution mechanism proposed by Siegbahn et al. The isotope effects presented here constitute boundary conditions for any suggested or calculated mechanism.


Assuntos
Metano/biossíntese , Metano/metabolismo , Methanobacteriaceae/enzimologia , Oxirredutases/metabolismo , Anaerobiose , Domínio Catalítico , Isótopos , Cinética , Modelos Moleculares , Oxirredução , Oxirredutases/química
20.
J Am Chem Soc ; 135(40): 14985-95, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24003767

RESUMO

Ethyl-coenzyme M (CH3CH2-S-CH2CH2-SO3(-), Et-S-CoM) serves as a homologous substrate for the enzyme methyl-coenzyme M reductase (MCR) resulting in the product ethane instead of methane. The catalytic reaction proceeds via an intermediate that already contains all six C-H bonds of the product. Because product release occurs after a second, rate-limiting step, many cycles of intermediate formation and reconversion to substrate occur before a substantial amount of ethane is released. In deuterated buffer, the intermediate becomes labeled, and C-H activation in the back reaction rapidly leads to labeled Et-S-CoM, which enables intermediate formation to be detected. Here, we present a comprehensive analysis of this pre-equilibrium. (2)H- and (13)C-labeled isotopologues of Et-S-CoM were used as the substrates, and the time course of each isotopologue was followed by NMR spectroscopy. A kinetic simulation including kinetic isotope effects allowed determination of the primary and α- and ß-secondary isotope effects for intermediate formation and for the C-H/C-D bond activation in the ethane-containing intermediate. The values obtained are in accordance with those found for the native substrate Me-S-CoM (see preceding publication, Scheller, S.; Goenrich, M.; Thauer, R. K.; Jaun, B. J. Am. Chem. Soc. 2013, 135, DOI: 10.1021/ja406485z) and thus imply the same catalytic mechanism for both substrates. The experiment by Floss and co-workers, demonstrating a net inversion of configuration to chiral ethane with CH3CDT-S-CoM as the substrate, is compatible with the observed rapid isotope exchange if the isotope effects measured here are taken into account.


Assuntos
Etano/metabolismo , Mesna/química , Mesna/metabolismo , Methanosarcina barkeri/enzimologia , Oxirredutases/metabolismo , Isótopos , Cinética , Modelos Moleculares , Oxirredutases/química , Conformação Proteica , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA