Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Physiol ; 181(4): 1480-1497, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31604811

RESUMO

Degradation of periplasmic proteins (Deg)/high temperature requirement A (HtrA) proteases are ATP-independent Ser endopeptidases that perform key aspects of protein quality control in all domains of life. Here, we characterized Chlamydomonas reinhardtii DEG1C, which together with DEG1A and DEG1B is orthologous to Arabidopsis (Arabidopsis thaliana) Deg1 in the thylakoid lumen. We show that DEG1C is localized to the stroma and the periphery of thylakoid membranes. Purified DEG1C exhibited high proteolytic activity against unfolded model substrates and its activity increased with temperature and pH. DEG1C forms monomers, trimers, and hexamers that are in dynamic equilibrium. DEG1C protein levels increased upon nitrogen, sulfur, and phosphorus starvation; under heat, oxidative, and high light stress; and when Sec-mediated protein translocation was impaired. DEG1C depletion was not associated with any obvious aberrant phenotypes under nonstress conditions, high light exposure, or heat stress. However, quantitative shotgun proteomics revealed differences in the abundance of 307 proteins between a deg1c knock-out mutant and the wild type under nonstress conditions. Among the 115 upregulated proteins are PSII biogenesis factors, FtsH proteases, and proteins normally involved in high light responses, including the carbon dioxide concentrating mechanism, photorespiration, antioxidant defense, and photoprotection. We propose that the lack of DEG1C activity leads to a physiological state of the cells resembling that induced by high light intensities and therefore triggers high light protection responses.


Assuntos
Aclimatação/efeitos da radiação , Chlamydomonas/genética , Chlamydomonas/efeitos da radiação , Luz , Mutação/genética , Proteínas de Plantas/genética , Acetatos/metabolismo , Concentração de Íons de Hidrogênio , Modelos Biológicos , Fenótipo , Fotossíntese/efeitos da radiação , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Dobramento de Proteína/efeitos da radiação , Multimerização Proteica , Proteólise/efeitos da radiação , Estresse Fisiológico/efeitos da radiação , Frações Subcelulares/metabolismo , Frações Subcelulares/efeitos da radiação , Especificidade por Substrato/efeitos da radiação , Temperatura , Tilacoides/metabolismo , Tilacoides/efeitos da radiação
2.
Plant Cell Environ ; 43(5): 1212-1229, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31994740

RESUMO

VIPP proteins aid thylakoid biogenesis and membrane maintenance in cyanobacteria, algae, and plants. Some members of the Chlorophyceae contain two VIPP paralogs termed VIPP1 and VIPP2, which originate from an early gene duplication event during the evolution of green algae. VIPP2 is barely expressed under nonstress conditions but accumulates in cells exposed to high light intensities or H2 O2 , during recovery from heat stress, and in mutants with defective integration (alb3.1) or translocation (secA) of thylakoid membrane proteins. Recombinant VIPP2 forms rod-like structures in vitro and shows a strong affinity for phosphatidylinositol phosphate. Under stress conditions, >70% of VIPP2 is present in membrane fractions and localizes to chloroplast membranes. A vipp2 knock-out mutant displays no growth phenotypes and no defects in the biogenesis or repair of photosystem II. However, after exposure to high light intensities, the vipp2 mutant accumulates less HSP22E/F and more LHCSR3 protein and transcript. This suggests that VIPP2 modulates a retrograde signal for the expression of nuclear genes HSP22E/F and LHCSR3. Immunoprecipitation of VIPP2 from solubilized cells and membrane-enriched fractions revealed major interactions with VIPP1 and minor interactions with HSP22E/F. Our data support a distinct role of VIPP2 in sensing and coping with chloroplast membrane stress.


Assuntos
Clorofíceas/metabolismo , Cloroplastos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana/fisiologia , Proteínas de Plantas/fisiologia , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/fisiologia , Chlamydomonas reinhardtii/ultraestrutura , Clorofíceas/genética , Clorofíceas/fisiologia , Clorofíceas/ultraestrutura , Cloroplastos/fisiologia , Cloroplastos/ultraestrutura , Clonagem Molecular , Imunoprecipitação , Espectrometria de Massas , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Microscopia de Fluorescência , Filogenia , Proteínas de Plantas/metabolismo , Proteínas Recombinantes , Tilacoides/metabolismo
3.
Sci Rep ; 9(1): 8725, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-31217458

RESUMO

In cyanobacteria and plants, VIPP1 plays crucial roles in the biogenesis and repair of thylakoid membrane protein complexes and in coping with chloroplast membrane stress. In chloroplasts, VIPP1 localizes in distinct patterns at or close to envelope and thylakoid membranes. In vitro, VIPP1 forms higher-order oligomers of >1 MDa that organize into rings and rods. However, it remains unknown how VIPP1 oligomerization is related to function. Using time-resolved fluorescence anisotropy and sucrose density gradient centrifugation, we show here that Chlamydomonas reinhardtii VIPP1 binds strongly to liposomal membranes containing phosphatidylinositol-4-phosphate (PI4P). Cryo-electron tomography reveals that VIPP1 oligomerizes into rods that can engulf liposomal membranes containing PI4P. These findings place VIPP1 into a group of membrane-shaping proteins including epsin and BAR domain proteins. Moreover, they point to a potential role of phosphatidylinositols in directing the shaping of chloroplast membranes.


Assuntos
Chlamydomonas reinhardtii/química , Proteínas de Membrana/química , Membranas Artificiais , Fosfatos de Fosfatidilinositol/química , Proteínas de Plantas/química , Multimerização Proteica , Chlamydomonas reinhardtii/metabolismo , Proteínas de Membrana/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas de Plantas/metabolismo
4.
ACS Synth Biol ; 7(9): 2074-2086, 2018 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-30165733

RESUMO

Microalgae are regarded as promising organisms to develop innovative concepts based on their photosynthetic capacity that offers more sustainable production than heterotrophic hosts. However, to realize their potential as green cell factories, a major challenge is to make microalgae easier to engineer. A promising approach for rapid and predictable genetic manipulation is to use standardized synthetic biology tools and workflows. To this end we have developed a Modular Cloning toolkit for the green microalga Chlamydomonas reinhardtii. It is based on Golden Gate cloning with standard syntax, and comprises 119 openly distributed genetic parts, most of which have been functionally validated in several strains. It contains promoters, UTRs, terminators, tags, reporters, antibiotic resistance genes, and introns cloned in various positions to allow maximum modularity. The toolkit enables rapid building of engineered cells for both fundamental research and algal biotechnology. This work will make Chlamydomonas the next chassis for sustainable synthetic biology.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Fotossíntese , Plasmídeos/metabolismo , Biologia Sintética/métodos , Biotecnologia , Chlamydomonas reinhardtii/genética , Expressão Gênica , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Plasmídeos/genética , Regiões Promotoras Genéticas
5.
Plant Signal Behav ; 11(9): e1218587, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27494214

RESUMO

The ability of photosystem (PS) II to catalyze the light-driven oxidation of water comes along with its vulnerability to oxidative damage, in particular of the D1 core subunit. Photodamaged PSII undergoes repair in a multi-step process involving (i) reversible phosphorylation of PSII core subunits; (ii) monomerization and lateral migration of the PSII core from grana to stroma thylakoids; (iii) partial disassembly of PSII; (iv) proteolytic degradation of damaged D1; (v) replacement of damaged D1 protein with a new copy; (vi) reassembly of PSII monomers and migration back to grana thylakoids for dimerization and supercomplex assembly. Here we review the current knowledge on the PSII repair cycle.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Fotossíntese/genética , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/genética , Tilacoides/genética , Tilacoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA