Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Neurobiol Dis ; 106: 133-146, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28673739

RESUMO

Parkinson's disease (PD) is a neurodegenerative movement disorder, which affects approximately 1-2% of the population over 60years of age. Current treatments for PD are symptomatic, and the pathology of the disease continues to progresses over time until palliative care is required. Mitochondria are key players in the pathology of PD. Genetic and post mortem studies have shown a large number of mitochondrial abnormalities in the substantia nigra pars compacta (SNc) of the parkinsonian brain. Furthermore, physiologically, mitochondria of nigral neurons are constantly under unusually high levels of metabolic stress because of the excitatory properties and architecture of these neurons. The protein deacetylase, Sirtuin 3 (SIRT3) reduces the impact subcellular stresses on mitochondria, by stabilising the electron transport chain (ETC), and reducing oxidative stress. We hypothesised that viral overexpression of myc-tagged SIRT3 (SIRT3-myc) would slow the progression of PD pathology, by enhancing the functional capacity of mitochondria. For this study, SIRT3-myc was administered both before and after viral induction of parkinsonism with the AAV-expressing mutant (A53T) α-synuclein. SIRT3-myc corrected behavioural abnormalities, as well as changes in striatal dopamine turnover. SIRT3-myc also prevented degeneration of dopaminergic neurons in the SNc. These effects were apparent, even when SIRT3-myc was transduced after the induction of parkinsonism, at a time point when cell stress and behavioural abnormalities are already observed. Furthermore, in an isolated mitochondria nigral homogenate prepared from parkinsonian SIRT3-myc infected animals, SIRT3 targeted the mitochondria, to reduce protein acetylation levels. Our results demonstrate that transduction of SIRT3 has the potential to be an effective disease-modifying strategy for patients with PD. This study also provides potential mechanisms for the protective effects of SIRT3-myc.


Assuntos
Mitocôndrias/metabolismo , Neurônios/metabolismo , Neuroproteção/fisiologia , Transtornos Parkinsonianos/metabolismo , Sirtuína 3/metabolismo , alfa-Sinucleína/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Dependovirus/genética , Feminino , Vetores Genéticos , Humanos , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/patologia , Mutação , Neurônios/patologia , Biogênese de Organelas , Transtornos Parkinsonianos/patologia , Ratos Sprague-Dawley , Sirtuína 3/genética , Substância Negra/metabolismo , Substância Negra/patologia , alfa-Sinucleína/genética
2.
Neurobiol Dis ; 71: 334-44, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25171793

RESUMO

Parkinsonian symptoms arise due to over-activity of the indirect striatal output pathway, and under-activity of the direct striatal output pathway. l-DOPA-induced dyskinesia (LID) is caused when the opposite circuitry problems are established, with the indirect pathway becoming underactive, and the direct pathway becoming over-active. Here, we define synaptic plasticity abnormalities in these pathways associated with parkinsonism, symptomatic benefits of l-DOPA, and LID. We applied spike-timing dependent plasticity protocols to cortico-striatal synapses in slices from 6-OHDA-lesioned mouse models of parkinsonism and LID, generated in BAC transgenic mice with eGFP targeting the direct or indirect output pathways, with and without l-DOPA present. In naïve mice, bidirectional synaptic plasticity, i.e. LTP and LTD, was induced, resulting in an EPSP amplitude change of approximately 50% in each direction in both striatal output pathways, as shown previously. In parkinsonism and dyskinesia, both pathways exhibited unidirectional plasticity, irrespective of stimulation paradigm. In parkinsonian animals, the indirect pathway only exhibited LTP (LTP protocol: 143.5±14.6%; LTD protocol 177.7±22.3% of baseline), whereas the direct pathway only showed LTD (LTP protocol: 74.3±4.0% and LTD protocol: 63.3±8.7%). A symptomatic dose of l-DOPA restored bidirectional plasticity on both pathways to levels comparable to naïve animals (Indirect pathway: LTP protocol: 124.4±22.0% and LTD protocol: 52.1±18.5% of baseline. Direct pathway: LTP protocol: 140.7±7.3% and LTD protocol: 58.4±6.0% of baseline). In dyskinesia, in the presence of l-DOPA, the indirect pathway exhibited only LTD (LTP protocol: 68.9±21.3% and LTD protocol 52.0±14.2% of baseline), whereas in the direct pathway, only LTP could be induced (LTP protocol: 156.6±13.2% and LTD protocol 166.7±15.8% of baseline). We conclude that normal motor control requires bidirectional plasticity of both striatal outputs, which underlies the symptomatic benefits of l-DOPA. Switching from bidirectional to unidirectional plasticity drives global changes in striatal pathway excitability, and underpins parkinsonism and dyskinesia.


Assuntos
Antiparkinsonianos/efeitos adversos , Corpo Estriado/patologia , Discinesia Induzida por Medicamentos/patologia , Levodopa/efeitos adversos , Vias Neurais/patologia , Plasticidade Neuronal/fisiologia , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Dopaminérgicos/farmacologia , Discinesia Induzida por Medicamentos/etiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Lateralidade Funcional , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Técnicas In Vitro , Camundongos , Camundongos Transgênicos , Plasticidade Neuronal/efeitos dos fármacos , Oxidopamina/toxicidade , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico , Purinérgicos/farmacologia , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Receptores de Dopamina D1/genética , Receptores de Dopamina D1/metabolismo
4.
J Vis Exp ; (60)2012 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-22370630

RESUMO

The unilaterally lesioned 6-hyroxydopamine (6-OHDA)-lesioned rat model of Parkinson's disease (PD) has proved to be invaluable in advancing our understanding of the mechanisms underlying parkinsonian symptoms, since it recapitulates the changes in basal ganglia circuitry and pharmacology observed in parkinsonian patients(1-4). However, the precise cellular and molecular changes occurring at cortico-striatal synapses of the output pathways within the striatum, which is the major input region of the basal ganglia remain elusive, and this is believed to be site where pathological abnormalities underlying parkinsonian symptoms arise(3,5). In PD, understanding the mechanisms underlying changes in basal ganglia circuitry following degeneration of the nigro-striatal pathway has been greatly advanced by the development of bacterial artificial chromosome (BAC) mice over-expressing green fluorescent proteins driven by promoters specific for the two striatal output pathways (direct pathway: eGFP-D1; indirect pathway: eGFP-D2 and eGFP-A2a)(8), allowing them to be studied in isolation. For example, recent studies have suggested that there are pathological changes in synaptic plasticity in parkinsonian mice(9,10). However, these studies utilised juvenile mice and acute models of parkinsonism. It is unclear whether the changes described in adult rats with stable 6-OHDA lesions also occur in these models. Other groups have attempted to generate a stable unilaterally-lesioned 6-OHDA adult mouse model of PD by lesioning the medial forebrain bundle (MFB), unfortunately, the mortality rate in this study was extremely high, with only 14% surviving the surgery for 21 days or longer(11). More recent studies have generated intra-nigral lesions with both a low mortality rate >80% loss of dopaminergic neurons, however expression of L-DOPA induced dyskinesia(11,12,13,14) was variable in these studies. Another well established mouse model of PD is the MPTP-lesioned mouse(15). Whilst this model has proven useful in the assessment of potential neuroprotective agents(16), it is less suitable for understanding mechanisms underlying symptoms of PD, as this model often fails to induce motor deficits, and shows a wide variability in the extent of lesion(17, 18). Here we have developed a stable unilateral 6-OHDA-lesioned mouse model of PD by direct administration of 6-OHDA into the MFB, which consistently causes >95% loss of striatal dopamine (as measured by HPLC), as well as producing the behavioural imbalances observed in the well characterised unilateral 6-OHDA-lesioned rat model of PD. This newly developed mouse model of PD will prove a valuable tool in understanding the mechanisms underlying generation of parkinsonian symptoms.


Assuntos
Modelos Animais de Doenças , Oxidopamina/administração & dosagem , Doença de Parkinson , Animais , Dopamina/deficiência , Dopamina/metabolismo , Feixe Prosencefálico Mediano/efeitos dos fármacos , Camundongos , Camundongos Transgênicos , Ratos
5.
J Neurosci Methods ; 197(2): 193-208, 2011 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-21352853

RESUMO

Prolonged use of the dopamine precursor L-DOPA for the treatment of Parkinson's disease commonly results in abnormal involuntary movements, which are termed L-DOPA-induced dyskinesia (LID). Over-activity at corticostriatal synapses onto neurons of the direct and indirect striatal output pathways has been implicated in the development of dyskinesia, but it has proved difficult to investigate the pathways separately due to their morphological similarities. The recent development of bacterial artificial chromosome mice that express green fluorescent protein in either the direct or indirect pathway allows visual identification of the output neurons in each pathway. Here we describe the use of two different strains of these transgenic mice (pure FVB and FVB crossed with C57BL6) in the development of mouse models of L-DOPA-induced dyskinesia. This model will allow the direct and indirect pathways to be studied individually to delineate the cellular and molecular mechanisms underlying dyskinesias. These studies demonstrate that mouse strain impacts on behavioural responses and L-DOPA sensitivity. Therefore, when generating mouse models of LID, strain must be taken into consideration when choosing the L-DOPA dosing regimen.


Assuntos
Antiparkinsonianos/toxicidade , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/fisiopatologia , Discinesia Induzida por Medicamentos/etiologia , Levodopa/toxicidade , Animais , Modelos Animais de Doenças , Discinesia Induzida por Medicamentos/genética , Vias Eferentes/efeitos dos fármacos , Vias Eferentes/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA