Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Nucleic Acids Res ; 46(19): 10340-10352, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30053103

RESUMO

Fine regulation of the phosphatase and tensin homologue (PTEN) phosphatase dosage is critical for homeostasis and tumour suppression. The 3'-untranslated region (3'-UTR) of Pten mRNA was extensively linked to post-transcriptional regulation by microRNAs (miRNAs). In spite of this critical regulatory role, alternative 3'-UTRs of Pten have not been systematically characterized. Here, we reveal an important diversity of Pten mRNA isoforms generated by alternative polyadenylation sites. Several 3'-UTRs are co-expressed and their relative expression is dynamically regulated. In spite of encoding multiple validated miRNA-binding sites, longer isoforms are largely refractory to miRNA-mediated silencing, are more stable and contribute to the bulk of PTEN protein and signalling functions. Taken together, our results warrant a mechanistic re-interpretation of the post-transcriptional mechanisms involving Pten mRNAs and raise concerns on how miRNA-binding sites are being validated.


Assuntos
MicroRNAs/genética , PTEN Fosfo-Hidrolase/genética , Poliadenilação/genética , Isoformas de RNA/genética , Regiões 3' não Traduzidas/genética , Animais , Homeostase , Camundongos , Células NIH 3T3 , Estabilidade de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética
2.
Mol Cell ; 40(4): 558-70, 2010 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-21095586

RESUMO

To understand how miRNA-mediated silencing impacts on embryonic mRNAs, we conducted a functional survey of abundant maternal and zygotic miRNA families in the C. elegans embryo. We show that the miR-35-42 and the miR-51-56 miRNA families define maternal and zygotic miRNA-induced silencing complexes (miRISCs), respectively, that share a large number of components. Using a cell-free C. elegans embryonic extract, we demonstrate that the miRISC directs the rapid deadenylation of reporter mRNAs with natural 3'UTRs. The deadenylated targets are translationally suppressed and remarkably stable. Sampling of the predicted miR-35-42 targets reveals that roughly half are deadenylated in a miRNA-dependent manner, but with each target displaying a distinct efficiency and pattern of deadenylation. Finally, we demonstrate that functional cooperation between distinct miRISCs within 3'UTRs is required to potentiate deadenylation. With this report, we reveal the extensive and direct impact of miRNA-mediated deadenylation on embryonic mRNAs.


Assuntos
Regiões 3' não Traduzidas/genética , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Embrião não Mamífero/metabolismo , MicroRNAs/genética , Processamento de Terminações 3' de RNA , Animais , Sequência de Bases , Sistema Livre de Células , Feminino , Inativação Gênica , MicroRNAs/metabolismo , Modelos Biológicos , Dados de Sequência Molecular , Proteômica , Complexo de Inativação Induzido por RNA/metabolismo , Zigoto/metabolismo
3.
Proc Natl Acad Sci U S A ; 107(8): 3582-7, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20133583

RESUMO

Argonaute (AGO) proteins interact with distinct classes of small RNAs to direct multiple regulatory outcomes. In many organisms, including plants, fungi, and nematodes, cellular RNA-dependent RNA polymerases (RdRPs) use AGO targets as templates for amplification of silencing signals. Here, we show that distinct RdRPs function sequentially to produce small RNAs that target endogenous loci in Caenorhabditis elegans. We show that DCR-1, the RdRP RRF-3, and the dsRNA-binding protein RDE-4 are required for the biogenesis of 26-nt small RNAs with a 5' guanine (26G-RNAs) and that 26G-RNAs engage the Piwi-clade AGO, ERGO-1. Our findings support a model in which targeting by ERGO-1 recruits a second RdRP (RRF-1 or EGO-1), which in turn transcribes 22G-RNAs that interact with worm-specific AGOs (WAGOs) to direct gene silencing. ERGO-1 targets exhibit a nonrandom distribution in the genome and appear to include many gene duplications, suggesting that this pathway may control overexpression resulting from gene expansion.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Interferência de RNA , RNA Interferente Pequeno/biossíntese , Proteínas de Ligação a RNA/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Endorribonucleases/metabolismo , Inativação Gênica , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Ribonuclease III , Transcrição Gênica
4.
Mol Cell Biol ; 26(4): 1538-48, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16449663

RESUMO

The pathogenetic mechanisms underlying autosomal dominant polycystic kidney disease (ADPKD) remain to be elucidated. While there is evidence that Pkd1 gene haploinsufficiency and loss of heterozygosity can cause cyst formation in mice, paradoxically high levels of Pkd1 expression have been detected in the kidneys of ADPKD patients. To determine whether Pkd1 gain of function can be a pathogenetic process, a Pkd1 bacterial artificial chromosome (Pkd1-BAC) was modified by homologous recombination to solely target a sustained Pkd1 expression preferentially to the adult kidney. Several transgenic lines were generated that specifically overexpressed the Pkd1 transgene in the kidneys 2- to 15-fold over Pkd1 endogenous levels. All transgenic mice reproducibly developed tubular and glomerular cysts and renal insufficiency and died of renal failure. This model demonstrates that overexpression of wild-type Pkd1 alone is sufficient to trigger cystogenesis resembling human ADPKD. Our results also uncovered a striking increased renal c-myc expression in mice from all transgenic lines, indicating that c-myc is a critical in vivo downstream effector of Pkd1 molecular pathways. This study not only produced an invaluable and first PKD model to evaluate molecular pathogenesis and therapies but also provides evidence that gain of function could be a pathogenetic mechanism in ADPKD.


Assuntos
Rim Policístico Autossômico Dominante/genética , Proteínas/genética , Animais , Sequência de Bases , Cromossomos Artificiais Bacterianos/genética , DNA/genética , Modelos Animais de Doenças , Expressão Gênica , Genes myc , Humanos , Rim/anormalidades , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Especificidade de Órgãos , Rim Policístico Autossômico Dominante/etiologia , Rim Policístico Autossômico Dominante/metabolismo , Recombinação Genética , Transdução de Sinais , Canais de Cátion TRPP
5.
Nat Struct Mol Biol ; 19(1): 90-7, 2011 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-22179787

RESUMO

Endogenous RNA interference (endo-RNAi) pathways use a variety of mechanisms to generate siRNA and to mediate gene silencing. In Caenorhabditis elegans, DCR-1 is essential for competing RNAi pathways-the ERI endo-RNAi pathway and the exogenous RNAi pathway-to function. Here, we demonstrate that DCR-1 forms exclusive complexes in each pathway and further define the ERI-DCR-1 complex. We show that the tandem tudor protein ERI-5 potentiates ERI endo-RNAi by tethering an RNA-dependent RNA polymerase (RdRP) module to DCR-1. In the absence of ERI-5, the RdRP module is uncoupled from DCR-1. Notably, EKL-1, an ERI-5 paralog that specifies distinct RdRP modules in Dicer-independent endo-RNAi pathways, partially compensates for the loss of ERI-5 without interacting with DCR-1. Our results implicate tudor proteins in the recruitment of RdRP complexes to specific steps within DCR-1-dependent and DCR-1-independent endo-RNAi pathways.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Interferência de RNA , RNA Polimerase Dependente de RNA/metabolismo , Ribonuclease III/metabolismo , Animais , Western Blotting , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Embrião não Mamífero/metabolismo , Imunoprecipitação , Mutação , Ligação Proteica , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/genética , Complexo de Inativação Induzido por RNA/genética , Complexo de Inativação Induzido por RNA/metabolismo , Proteínas Recombinantes/metabolismo , Ribonuclease III/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA