Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccine ; 42(12): 2945-2950, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38580516

RESUMO

The ComFluCOV trial randomized 679 participants to receive an age-appropriate influenza vaccine, or placebo, alongside their second COVID-19 vaccine. Concomitant administration was shown to be safe, and to preserve systemic immune responses to both vaccines. Here we report on a secondary outcome of the trial investigating SARS-CoV-2-specific mucosal antibody responses. Anti-spike IgG and IgA levels in saliva were measured with in-house ELISAs. Concomitant administration of an influenza vaccine did not affect salivary anti-spike IgG positivity rates to Pfizer/BioNTech BNT162b2 (99.1 cf. 95.6%), or AstraZeneca ChAdOx1 (67.8% cf. 64.9%), at 3-weeks post-vaccination relative to placebo. Furthermore, saliva IgG positively correlated with serum titres highlighting the potential utility of saliva for assessing differences in immunogenicity in future vaccine studies. Mucosal IgA was not detected in response to either COVID-19 vaccine, reinforcing the need for novel vaccines capable of inducing sterilising immunity or otherwise reducing transmission. The trial is registered as ISRCTN 14391248.


Assuntos
COVID-19 , Vacinas contra Influenza , Influenza Humana , Humanos , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Imunoglobulina G , Influenza Humana/prevenção & controle , Saliva , SARS-CoV-2 , Vacinação
2.
Commun Med (Lond) ; 3(1): 37, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922542

RESUMO

BACKGROUND: Saliva is easily obtainable non-invasively and potentially suitable for detecting both current and previous SARS-CoV-2 infection, but there is limited evidence on the utility of salivary antibody testing for community surveillance. METHODS: We established 6 ELISAs detecting IgA and IgG antibodies to whole SARS-CoV-2 spike protein, to its receptor binding domain region and to nucleocapsid protein in saliva. We evaluated diagnostic performance, and using paired saliva and serum samples, correlated mucosal and systemic antibody responses. The best-performing assays were field-tested in 20 household outbreaks. RESULTS: We demonstrate in test accuracy (N = 320), spike IgG (ROC AUC: 95.0%, 92.8-97.3%) and spike IgA (ROC AUC: 89.9%, 86.5-93.2%) assays to discriminate best between pre-pandemic and post COVID-19 saliva samples. Specificity was 100% in younger age groups (0-19 years) for spike IgA and IgG. However, sensitivity was low for the best-performing assay (spike IgG: 50.6%, 39.8-61.4%). Using machine learning, diagnostic performance was improved when a combination of tests was used. As expected, salivary IgA was poorly correlated with serum, indicating an oral mucosal response whereas salivary IgG responses were predictive of those in serum. When deployed to household outbreaks, antibody responses were heterogeneous but remained a reliable indicator of recent infection. Intriguingly, unvaccinated children without confirmed infection showed evidence of exposure almost exclusively through specific IgA responses. CONCLUSIONS: Through robust standardisation, evaluation and field-testing, this work provides a platform for further studies investigating SARS-CoV-2 transmission and mucosal immunity with the potential for expanding salivo-surveillance to other respiratory infections in hard-to-reach settings.


If a person has been previously infected with SARS-CoV-2 they will produce specific proteins, called antibodies. These are present in the saliva and blood. Saliva is easier to obtain than blood, so we developed and evaluated six tests that detect SARS-CoV-2 antibodies in saliva in children and adults. Some tests detected antibodies to a particular protein made by SARS-CoV-2 called the spike protein, and these tests worked best. The most accurate results were obtained by using a combination of tests. Similar tests could also be developed to detect other respiratory infections which will enable easier identification of infected individuals.

3.
Front Immunol ; 13: 968317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439154

RESUMO

Low-volume antibody assays can be used to track SARS-CoV-2 infection rates in settings where active testing for virus is limited and remote sampling is optimal. We developed 12 ELISAs detecting total or antibody isotypes to SARS-CoV-2 nucleocapsid, spike protein or its receptor binding domain (RBD), 3 anti-RBD isotype specific luciferase immunoprecipitation system (LIPS) assays and a novel Spike-RBD bridging LIPS total-antibody assay. We utilized pre-pandemic (n=984) and confirmed/suspected recent COVID-19 sera taken pre-vaccination rollout in 2020 (n=269). Assays measuring total antibody discriminated best between pre-pandemic and COVID-19 sera and were selected for diagnostic evaluation. In the blind evaluation, two of these assays (Spike Pan ELISA and Spike-RBD Bridging LIPS assay) demonstrated >97% specificity and >92% sensitivity for samples from COVID-19 patients taken >21 days post symptom onset or PCR test. These assays offered better sensitivity for the detection of COVID-19 cases than a commercial assay which requires 100-fold larger serum volumes. This study demonstrates that low-volume in-house antibody assays can provide good diagnostic performance, and highlights the importance of using well-characterized samples and controls for all stages of assay development and evaluation. These cost-effective assays may be particularly useful for seroprevalence studies in low and middle-income countries.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Anticorpos Antivirais , Proteínas do Envelope Viral , Estudos Soroepidemiológicos , COVID-19/diagnóstico , Glicoproteínas de Membrana
4.
Nat Commun ; 12(1): 5017, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404780

RESUMO

Controlling COVID-19 transmission in universities poses challenges due to the complex social networks and potential for asymptomatic spread. We developed a stochastic transmission model based on realistic mixing patterns and evaluated alternative mitigation strategies. We predict, for plausible model parameters, that if asymptomatic cases are half as infectious as symptomatic cases, then 15% (98% Prediction Interval: 6-35%) of students could be infected during the first term without additional control measures. First year students are the main drivers of transmission with the highest infection rates, largely due to communal residences. In isolation, reducing face-to-face teaching is the most effective intervention considered, however layering multiple interventions could reduce infection rates by 75%. Fortnightly or more frequent mass testing is required to impact transmission and was not the most effective option considered. Our findings suggest that additional outbreak control measures should be considered for university settings.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , Universidades , Surtos de Doenças/prevenção & controle , Humanos , Modelos Biológicos , SARS-CoV-2/isolamento & purificação , Estudantes , Inquéritos e Questionários , Reino Unido/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA