Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 10(5): 1753-1763, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32209596

RESUMO

The molecular interactions between tomato and Cladosporium fulvum have been an important model for molecular plant pathology. Complex genetic loci on tomato chromosomes 1 and 6 harbor genes for resistance to Cladosporium fulvum, encoding receptor like-proteins that perceive distinct Cladosporium fulvum effectors and trigger plant defenses. Here, we report classical mapping strategies for loci in tomato accessions that respond to Cladosporium fulvum effector Ecp5, which is very sequence-monomorphic. We screened 139 wild tomato accessions for an Ecp5-induced hypersensitive response, and in five accessions, the Ecp5-induced hypersensitive response segregated as a monogenic trait, mapping to distinct loci in the tomato genome. We identified at least three loci on chromosomes 1, 7 and 12 that harbor distinct Cf-Ecp5 genes in four different accessions. Our mapping showed that the Cf-Ecp5 in Solanum pimpinellifolium G1.1161 is located at the Milky Way locus. The Cf-Ecp5 in Solanum pimpinellifolium LA0722 was mapped to the bottom arm of chromosome 7, while the Cf-Ecp5 genes in Solanum lycopersicum Ontario 7522 and Solanum pimpinellifolium LA2852 were mapped to the same locus on the top arm of chromosome 12. Bi-parental crosses between accessions carrying distinct Cf-Ecp5 genes revealed putative genetically unlinked suppressors of the Ecp5-induced hypersensitive response. Our mapping also showed that Cf-11 is located on chromosome 11, close to the Cf-3 locus. The Ecp5-induced hypersensitive response is widely distributed within tomato species and is variable in strength. This novel example of convergent evolution could be used for choosing different functional Cf-Ecp5 genes according to individual plant breeding needs.


Assuntos
Solanum lycopersicum , Ascomicetos , Cladosporium/genética , Proteínas Fúngicas , Solanum lycopersicum/genética , Melhoramento Vegetal , Doenças das Plantas/genética , Proteínas de Plantas/genética
2.
Annu Rev Phytopathol ; 43: 395-436, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16078890

RESUMO

The interaction between tomato and the leaf mold pathogen Cladosporium fulvum is controlled in a gene-for-gene manner. This interaction has provided useful insights to the molecular basis of recognition specificity in plant disease resistance (R) proteins, disease resistance (R) gene evolution, R-protein mediated signaling, and cellular responses to pathogen attack. Tomato Cf genes encode type I membrane-associated receptor-like proteins (RLPs) comprised predominantly of extracellular leucine-rich repeats (eLRRs) and which are anchored in the plasma membrane. Cf proteins recognize fungal avirulence (Avr) peptides secreted into the leaf apoplast during infection. A direct interaction of Cf proteins with their cognate Avr proteins has not been demonstrated and the molecular mechanism of Avr protein perception is not known. Following ligand perception Cf proteins trigger a hypersensitive response (HR) and the arrest of pathogen development. Cf proteins lack an obvious signaling domain, suggesting that defense response activation is mediated through interactions with other partners. Avr protein perception results in the rapid accumulation of active oxygen species (AOS), changes in cellular ion fluxes, activation of protein kinase cascades, changes in gene expression and, possibly, targeted protein degradation. Here we review our current understanding of Cf-mediated responses in resistance to C. fulvum.


Assuntos
Cladosporium/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Solanum lycopersicum/microbiologia , Cladosporium/genética , Interações Hospedeiro-Parasita , Proteínas Virais/química , Proteínas Virais/genética
3.
Genetics ; 167(1): 459-70, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15166169

RESUMO

The interaction between tomato (Lycopersicon esculentum) and the leaf mold pathogen Cladosporium fulvum is an excellent model for investigating disease resistance gene evolution. The interaction is controlled in a gene-for-gene manner by Cf genes that encode type I transmembrane extracellular leucine-rich repeat glycoproteins that recognize their cognate fungal avirulence (Avr) proteins. Cf-4 from L. hirsutum and Cf-9 from L. pimpinellifolium are located at the same locus on the short arm of tomato chromosome 1 in an array of five paralogs. Molecular analysis has shown that one mechanism for generating sequence variation in Cf genes is intragenic sequence exchange through unequal crossing over or gene conversion. To investigate this we used a facile genetic selection to identify novel haplotypes in the progeny of Cf-4/Cf-9 trans-heterozygotes that lacked Cf-4 and Cf-9. This selection is based on the ability of Avr4 and Avr9 to induce Cf-4- or Cf-9-dependent seedling death. The crossovers were localized to the same intergenic region defining a recombination hotspot in this cross. As part of a structure-function analysis of Cf-9 and Cf-4, nine EMS-induced mutant alleles have been characterized. Most mutations result in single-amino-acid substitutions in their C terminus at residues that are conserved in other Cf proteins.


Assuntos
Variação Genética , Mutagênese , Recombinação Genética , Solanum lycopersicum/genética , Alelos , Sequência de Aminoácidos , DNA/metabolismo , Metanossulfonato de Etila/química , Evolução Molecular , Genes de Plantas , Marcadores Genéticos , Técnicas Genéticas , Glicoproteínas/genética , Haplótipos , Heterozigoto , Homozigoto , Canamicina/farmacologia , Meiose , Modelos Genéticos , Modelos Moleculares , Dados de Sequência Molecular , Mutagênicos , Mutação , Proteínas de Plantas , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
4.
Mol Genet Genomics ; 278(4): 411-20, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17574477

RESUMO

Studies in several plants have shown that Agrobacterium tumefaciens T-DNA can integrate into plant chromosomal DNA by different mechanisms involving single-stranded (ss) or double-stranded (ds) forms. One mechanism requires sequence homology between plant target and ssT-DNA border sequences and another double-strand-break repair in which preexisting chromosomal DSBs "capture" dsT-DNAs. To learn more about T-DNA integration in Solanum lycopersicum we characterised 98 T-DNA/plant DNA junction sequences and show that T-DNA left border (LB) and right border transfer is much more variable than previously reported in Arabidopsis thaliana and Populus tremula. The analysis of seven plant target sequences showed that regions of homology between the T-DNA LB and plant chromosomal DNA plays an important role in T-DNA integration. One T-DNA insertion generated a target sequence duplication that resulted from nucleolytic processing of a LB/plant DNA heteroduplex that generated a DSB in plant chromosomal DNA. One broken end contained a captured T-DNA that served as a template for DNA repair synthesis. We propose that most T-DNA integrations in tomato require sequence homology between the ssT-DNA LB and plant target DNA which results in the generation of DSBs in plant chromosomal DNA.


Assuntos
Agrobacterium tumefaciens/genética , DNA Bacteriano/metabolismo , Mutagênese Insercional/fisiologia , Homologia de Sequência do Ácido Nucleico , Solanum lycopersicum/genética , Sequência de Bases , DNA Bacteriano/fisiologia , DNA de Plantas/química , Modelos Biológicos , Dados de Sequência Molecular , Plantas Geneticamente Modificadas , Análise de Sequência de DNA , Transformação Genética/genética
5.
Theor Appl Genet ; 115(8): 1127-36, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17874062

RESUMO

The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an excellent model to study gene-for-gene interactions and plant disease resistance gene evolution. Most Cf genes were introgressed into cultivated tomato (Solanum lycopersicum) from wild relatives such as S. pimpinellifolium and novel Cf-ECP genes were recently identified in this species. Our objective is to isolate Cf-ECP1, Cf-ECP2, Cf-ECP4 and Cf-ECP5 to increase our understanding of Cf gene evolution, and the molecular basis for recognition specificity in Cf proteins. The map locations of Cf-ECP2 and Cf-ECP5 have been reported previously and we report here that Cf-ECP1 and Cf-ECP4 map to a different locus on the short arm of chromosome 1. The analysis of selected recombinants and allelism tests showed both genes are located at Milky Way together with Cf-9 and Cf-4. Our results emphasise the importance of this locus in generating novel Cf genes for resistance to C. fulvum. Candidate genes for Cf-ECP1 and Cf-ECP4 were also identified by DNA gel blot analysis of bulked segregant pools. In addition, we generated functional cassettes for expression of the C. fulvum ECP1, ECP2, ECP4 and ECP5 proteins using recombinant Potato Virus X, and three ECPs were also expressed in stable transformed plants. Using marker-assisted selection we have also identified recombinants containing Cf-ECP1, Cf-ECP2, Cf-ECP4 or Cf-ECP5 in cis with a linked T-DNA carrying the non-autonomous Zea mays transposon Dissociation. Using these resources it should now be possible to isolate all four Cf-ECPs using transposon tagging, or a candidate gene strategy.


Assuntos
Mapeamento Cromossômico , Genes de Plantas , Doenças das Plantas/microbiologia , Solanum/genética , Solanum/microbiologia , Sequência de Aminoácidos , Sequência de Bases , Cladosporium/genética , Cladosporium/metabolismo , Cladosporium/patogenicidade , Espaço Extracelular/genética , Espaço Extracelular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Marcadores Genéticos , Vetores Genéticos , Dados de Sequência Molecular , Doenças das Plantas/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Potexvirus , Solanum/metabolismo
6.
Plant J ; 40(6): 942-56, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15584959

RESUMO

Tomato Cf genes encode membrane-bound proteins with extracellular leucine-rich repeats, and confer resistance to the fungal tomato pathogen Cladosporium fulvum, and a hypersensitive response (HR) to C. fulvum-derived race-specific elicitors. Several Cf genes, including Cf-4 and Cf-9, are members of the highly homologous Hcr9 (homologues of C. fulvumresistance gene Cf-9) gene family. Hcr9s evolve mainly by sequence exchange between paralogues, by which novel Cf genes may be generated. To mimic this aspect of natural evolution, we generated chimeras between multiple Hcr9s in vitro by gene shuffling. The shufflants were tested for novel specificities by transient expression in Nicotiana benthamiana. Many shufflants induced an HR in the absence of fungal elicitors and were designated auto-activators. We also identified two natural Hcr9 auto-activators in the wild tomato species Lycopersicon peruvianum, which induced an HR upon expression in N. benthamiana. The Hcr9 auto-activators exhibit different auto-necrosis-inducing specificities in five selected species of the Nicotiana genus, and they were shown to function in the same signalling pathway as Cf-9. Auto-activating alleles of nucleotide binding site-leucine-rich repeat genes and the protein kinase Pto were previously described. The auto-activators described here, belonging to the Cf-like structural class of resistance genes, shed light on this important phenotype and may be used as tools to unravel the mechanisms by which this class of resistance proteins function.


Assuntos
Genes de Plantas , Variação Genética , Glicoproteínas de Membrana/genética , Necrose/metabolismo , Nicotiana/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Alelos , Sequência de Aminoácidos , Cladosporium/patogenicidade , Biblioteca Gênica , Vetores Genéticos , Solanum lycopersicum/microbiologia , Dados de Sequência Molecular , Família Multigênica , Necrose/genética , Doenças das Plantas/microbiologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Rhizobium/genética , Alinhamento de Sequência , Transdução de Sinais , Especificidade da Espécie , Nicotiana/genética
7.
Science ; 296(5568): 744-7, 2002 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-11976458

RESUMO

Little is known of how plant disease resistance (R) proteins recognize pathogens and activate plant defenses. Rcr3 is specifically required for the function of Cf-2, a Lycopersicon pimpinellifolium gene bred into cultivated tomato (Lycopersicon esculentum) for resistance to Cladosporium fulvum. Rcr3 encodes a secreted papain-like cysteine endoprotease. Genetic analysis shows Rcr3 is allelic to the L. pimpinellifolium Ne gene, which suppresses the Cf-2-dependent autonecrosis conditioned by its L. esculentum allele, ne (necrosis). Rcr3 alleles from these two species encode proteins that differ by only seven amino acids. Possible roles of Rcr3 in Cf-2-dependent defense and autonecrosis are discussed.


Assuntos
Cladosporium/fisiologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Genes de Plantas , Doenças das Plantas , Proteínas de Plantas/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Alelos , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Cisteína Endopeptidases/química , Inibidores de Cisteína Proteinase/farmacologia , Regulação da Expressão Gênica de Plantas , Imunidade Inata , Leucina/análogos & derivados , Leucina/farmacologia , Solanum lycopersicum/genética , Solanum lycopersicum/fisiologia , Dados de Sequência Molecular , Mutação , Fenótipo , Folhas de Planta/enzimologia , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Nicotiana/genética , Transgenes
8.
Mol Plant Pathol ; 3(4): 277-82, 2002 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20569335
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA