Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 173
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Biochem ; 478(8): 1771-1777, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36566486

RESUMO

Sulfate is essential for healthy foetal growth and neurodevelopment. The SLC13A1 sulfate transporter is primarily expressed in the kidney where it mediates sulfate reabsorption and maintains circulating sulfate levels. To meet foetal demands, maternal sulfate levels increase by twofold in pregnancy via upregulated SLC13A1 expression. Previous studies found hyposulfataemia and reduced renal Slc13a1 mRNA expression in rodent models with either severe vitamin D deficiency or perturbed vitamin D signalling. Here we investigated a mouse model of moderate vitamin D deficiency. However, serum sulfate level and renal Slc13a1 mRNA expression was not decreased by a moderate reduction in circulating vitamin D level. We confirmed that the mouse Slc13a1 5'-flanking region was upregulated by 1,25(OH)2D3 using luciferase assays in a cultured renal OK cell line. These results support the presence of a functional VDRE in the mouse Slc13a1 but suggests that moderate vitamin D deficiency does not impact on sulfate homeostasis. As sulfate biology is highly conserved between rodents and humans, we proposed that human SLC13A1 would be under similar transcriptional regulation by 1,25(OH)2D3. Using an online prediction tool we identified a putative VDRE in the SLC13A1 5'-flanking region but unlike the mouse Slc13a1 sequence, the human sequence did not confer a significant response to 1,25(OH)2D3 in vitro. Overall, this study suggests that moderate vitamin D deficiency may not alter sulfate homeostasis. This needs to be confirmed in humans, particularly during pregnancy when vitamin D and sulfate levels need to be maintained at high levels for healthy maternal and child outcomes.


Assuntos
Deficiência de Vitamina D , Vitamina D , Gravidez , Feminino , Criança , Humanos , Camundongos , Animais , Regulação da Expressão Gênica , Deficiência de Vitamina D/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sulfatos/metabolismo
2.
Mol Psychiatry ; 26(7): 2708-2720, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33500553

RESUMO

Many epidemiological studies have highlighted the link between vitamin D deficiency and schizophrenia. In particular, two prominent studies report an association between neonatal vitamin D deficiency and an increased risk of schizophrenia. In parallel, much has been learnt about the role of vitamin D in the developing central nervous system over the last two decades. Studies in rodent models of developmental vitamin D (DVD)-deficiency describe how brain development is altered leading to a range of neurobiological and behavioral phenotypes of interest to schizophrenia. While glutamate and gamma aminobutyric acid (GABA) systems have been little investigated in these models, alterations in developing dopamine systems are frequently reported. There have been far more studies reporting patients with schizophrenia have an increased risk of vitamin D deficiency compared to well controls. Here we have conducted a systematic review and meta-analysis that basically confirms this association and extends this to first-episode psychosis. However, patients with schizophrenia also have poorer general health, poorer diets, are frequently less active and also have an increased risk of other medical conditions, all factors which reduce circulating vitamin D levels. Therefore, we would urge caution in any causal interpretation of this association. We also summarize the inconsistent results from existing vitamin D supplementation trials in patients with schizophrenia. In respect to animal models of adult vitamin D deficiency, such exposures produce subtle neurochemical alterations and effects on cognition but do not appear to produce behavioral phenotypes of relevance to schizophrenia. We conclude, the hypothesis that vitamin D deficiency during early life may increase the risk of schizophrenia remains plausible and warrants ongoing research.


Assuntos
Esquizofrenia , Deficiência de Vitamina D , Animais , Cognição , Dopamina , Humanos , Vitamina D , Deficiência de Vitamina D/complicações
3.
Cereb Cortex ; 31(3): 1763-1775, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33188399

RESUMO

Genetic association studies have identified many factors associated with neurodevelopmental disorders such as autism spectrum disorder (ASD). However, the way these genes shape neuroanatomical structure and connectivity is poorly understood. Recent research has focused on proteins that act as points of convergence for multiple factors, as these may provide greater insight into understanding the biology of neurodevelopmental disorders. USP9X, a deubiquitylating enzyme that regulates the stability of many ASD-related proteins, is one such point of convergence. Loss of function variants in human USP9X lead to brain malformations, which manifest as a neurodevelopmental syndrome that frequently includes ASD, but the underlying structural and connectomic abnormalities giving rise to patient symptoms is unknown. Here, we analyzed forebrain-specific Usp9x knockout mice (Usp9x-/y) to address this knowledge gap. Usp9x-/y mice displayed abnormal communication and social interaction behaviors. Moreover, the absence of Usp9x culminated in reductions to the size of multiple brain regions. Diffusion tensor magnetic resonance imaging revealed deficits in all three major forebrain commissures, as well as long-range hypoconnectivity between cortical and subcortical regions. These data identify USP9X as a key regulator of brain formation and function, and provide insights into the neurodevelopmental syndrome arising as a consequence of USP9X mutations in patients.


Assuntos
Córtex Cerebral/fisiopatologia , Vias Neurais/fisiopatologia , Neurogênese/fisiologia , Ubiquitina Tiolesterase/metabolismo , Animais , Comportamento Animal , Masculino , Camundongos , Camundongos Knockout
4.
Development ; 145(3)2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29437824

RESUMO

Our understanding of the transcriptional programme underpinning adult hippocampal neurogenesis is incomplete. In mice, under basal conditions, adult hippocampal neural stem cells (AH-NSCs) generate neurons and astrocytes, but not oligodendrocytes. The factors limiting oligodendrocyte production, however, remain unclear. Here, we reveal that the transcription factor NFIX plays a key role in this process. NFIX is expressed by AH-NSCs, and its expression is sharply upregulated in adult hippocampal neuroblasts. Conditional ablation of Nfix from AH-NSCs, coupled with lineage tracing, transcriptomic sequencing and behavioural studies collectively reveal that NFIX is cell-autonomously required for neuroblast maturation and survival. Moreover, a small number of AH-NSCs also develop into oligodendrocytes following Nfix deletion. Remarkably, when Nfix is deleted specifically from intermediate progenitor cells and neuroblasts using a Dcx-creERT2 driver, these cells also display elevated signatures of oligodendrocyte gene expression. Together, these results demonstrate the central role played by NFIX in neuroblasts within the adult hippocampal stem cell neurogenic niche in promoting the maturation and survival of these cells, while concomitantly repressing oligodendrocyte gene expression signatures.


Assuntos
Hipocampo/citologia , Hipocampo/metabolismo , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Astrócitos/citologia , Astrócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Sobrevivência Celular , Proteína Duplacortina , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Hipocampo/crescimento & desenvolvimento , Masculino , Transtornos da Memória/genética , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos , Camundongos Knockout , Fatores de Transcrição NFI/deficiência , Fatores de Transcrição NFI/genética , Neurogênese/genética , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Nicho de Células-Tronco/genética , Nicho de Células-Tronco/fisiologia , Regulação para Cima
5.
Cereb Cortex ; 29(8): 3590-3604, 2019 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-30272140

RESUMO

Understanding the migration of newborn neurons within the brain presents a major challenge in contemporary biology. Neuronal migration is widespread within the developing brain but is also important within the adult brain. For instance, stem cells within the ventricular-subventricular zone (V-SVZ) and the subgranular zone of dentate gyrus of the adult rodent brain produce neuroblasts that migrate to the olfactory bulb and granule cell layer of the dentate gyrus, respectively, where they regulate key brain functions including innate olfactory responses, learning, and memory. Critically, our understanding of the factors mediating neuroblast migration remains limited. The transcription factor nuclear factor I X (NFIX) has previously been implicated in embryonic cortical development. Here, we employed conditional ablation of Nfix from the adult mouse brain and demonstrated that the removal of this gene from either neural stem and progenitor cells, or neuroblasts, within the V-SVZ culminated in neuroblast migration defects. Mechanistically, we identified aberrant neuroblast branching, due in part to increased expression of the guanylyl cyclase natriuretic peptide receptor 2 (Npr2), as a factor contributing to abnormal migration in Nfix-deficient adult mice. Collectively, these data provide new insights into how neuroblast migration is regulated at a transcriptional level within the adult brain.


Assuntos
Movimento Celular/genética , Giro Denteado/citologia , Ventrículos Laterais/citologia , Fatores de Transcrição NFI/genética , Células-Tronco Neurais/metabolismo , Animais , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Camundongos , Células-Tronco Neurais/citologia , Neurogênese/genética , Receptores do Fator Natriurético Atrial/genética
6.
Hum Brain Mapp ; 40(2): 394-406, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30251770

RESUMO

Vitamin D deficiency may exacerbate adverse neurocognitive outcomes in the progression of diseases such as Parkinson's, Alzheimer's, and other dementias. Mild cognitive impairment (MCI) is prodromal for these neurocognitive disorders and neuroimaging studies suggest that, in the elderly, this cognitive impairment is associated with a reduction in hippocampal volume and white matter structural integrity. To test whether vitamin D is associated with neuroanatomical correlates of MCI, we analyzed an existing structural and diffusion MRI dataset of elderly patients with MCI. Based on serum 25-OHD levels, patients were categorized into serum 25-OHD deficient (<12 ng/mL, n = 27) or not-deficient (>12 ng/mL, n = 29). Freesurfer 6.0 was used to parcellate the whole brain into 164 structures and segment the hippocampal subfields. Whole-brain structural connectomes were generated using probabilistic tractography with MRtrix. The network-based statistic (NBS) was used to identify subnetworks of connections that significantly differed between the groups. We found a significant reduction in total hippocampal volume in the serum 25-OHD deficient group especially in the CA1, molecular layer, dentate gyrus, and fimbria. We observed a connection deficit in 13 regions with the right hippocampus at the center of the disrupted network. Our results demonstrate that low vitamin D is associated with reduced volumes of hippocampal subfields and connection deficits in elderly people with MCI, which may exacerbate neurocognitive outcomes. Longitudinal studies are now required to determine if vitamin D can serve as a biomarker for Alzheimer's disease and if intervention can prevent the progression from MCI to major cognitive disorders.


Assuntos
Envelhecimento , Disfunção Cognitiva , Hipocampo , Rede Nervosa , Deficiência de Vitamina D , Idoso , Envelhecimento/sangue , Envelhecimento/patologia , Envelhecimento/fisiologia , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/patologia , Disfunção Cognitiva/fisiopatologia , Feminino , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia , Deficiência de Vitamina D/sangue , Deficiência de Vitamina D/diagnóstico por imagem , Deficiência de Vitamina D/patologia , Deficiência de Vitamina D/fisiopatologia
7.
Chemistry ; 25(11): 2729-2734, 2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30681236

RESUMO

Cubane was recently validated as a phenyl ring (bio)isostere, but highly strained caged carbocyclic systems lack π character, which is often critical for mediating key biological interactions. This electronic property restriction associated with cubane has been addressed herein with cyclooctatetraene (COT), using known pharmaceutical and agrochemical compounds as templates. COT either outperformed or matched cubane in multiple cases suggesting that versatile complementarity exists between the two systems for enhanced bioactive molecule discovery.

8.
Glob Ecol Biogeogr ; 28(2): 78-95, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31007605

RESUMO

AIM: Plant functional groups are widely used in community ecology and earth system modelling to describe trait variation within and across plant communities. However, this approach rests on the assumption that functional groups explain a large proportion of trait variation among species. We test whether four commonly used plant functional groups represent variation in six ecologically important plant traits. LOCATION: Tundra biome. TIME PERIOD: Data collected between 1964 and 2016. MAJOR TAXA STUDIED: 295 tundra vascular plant species. METHODS: We compiled a database of six plant traits (plant height, leaf area, specific leaf area, leaf dry matter content, leaf nitrogen, seed mass) for tundra species. We examined the variation in species-level trait expression explained by four traditional functional groups (evergreen shrubs, deciduous shrubs, graminoids, forbs), and whether variation explained was dependent upon the traits included in analysis. We further compared the explanatory power and species composition of functional groups to alternative classifications generated using post hoc clustering of species-level traits. RESULTS: Traditional functional groups explained significant differences in trait expression, particularly amongst traits associated with resource economics, which were consistent across sites and at the biome scale. However, functional groups explained 19% of overall trait variation and poorly represented differences in traits associated with plant size. Post hoc classification of species did not correspond well with traditional functional groups, and explained twice as much variation in species-level trait expression. MAIN CONCLUSIONS: Traditional functional groups only coarsely represent variation in well-measured traits within tundra plant communities, and better explain resource economic traits than size-related traits. We recommend caution when using functional group approaches to predict tundra vegetation change, or ecosystem functions relating to plant size, such as albedo or carbon storage. We argue that alternative classifications or direct use of specific plant traits could provide new insights for ecological prediction and modelling.

9.
Behav Pharmacol ; 30(5): 383-395, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30379647

RESUMO

Behavioural sensitization is a putative mechanism in the pathophysiology of drug addiction and neuropsychiatric disorders such as schizophrenia. In rodents, drug-induced behavioural sensitization has been described for several different drug classes. The N-methyl-D-aspartate receptor antagonist MK-801 can inhibit sensitization to other drugs of abuse. However, MK-801 also produces behavioural sensitization to its own hyperlocomotor inducing effects, suggesting that MK-801 sensitization has a distinctive mechanism of action. The aim of this study was to carry out a functional and molecular analysis of the nucleus accumbens (NAc) of adult male Sprague-Dawley rats sensitized to MK-801 (seven daily injections of 0.25 mg/kg, 5 days of withdrawal and subsequent 0.25 mg/kg challenge), or following acute MK-801 (0.25 mg/kg), or naive rats as controls. Locomotor activity was the primary measure of sensitization. Ex-vivo slice electrophysiology showed a decrease in the excitatory synaptic strength in the NAc of rats sensitized to MK-801 compared with acute MK-801 treatment or naive controls. An LC-MS/MS SWATH proteomics approach showed that proteins altered by MK-801 sensitization were predominantly related to functions including calcium and glutamate signalling, and mitochondrial dysfunction. These results shed some light on neural changes in the NAc after sensitization to MK-801. This model could prove useful for studying the role of N-methyl-D-aspartate receptors in the pathophysiology of drug addiction and schizophrenia.


Assuntos
Maleato de Dizocilpina/farmacologia , Tolerância a Medicamentos/fisiologia , Núcleo Accumbens/metabolismo , Animais , Estimulantes do Sistema Nervoso Central/farmacologia , Cromatografia Líquida , Relação Dose-Resposta a Droga , Antagonistas de Aminoácidos Excitatórios/farmacologia , Locomoção/efeitos dos fármacos , Masculino , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/fisiologia , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Espectrometria de Massas em Tandem
10.
J Strength Cond Res ; 32(10): 2762-2769, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28723812

RESUMO

Harries, SK, Lubans, DR, Buxton, A, MacDougall, THJ, and Callister, R. Effects of 12-week resistance training on sprint and jump performances in competitive adolescent rugby union players. J Strength Cond Res 32(10): 2762-2769, 2018-Sprint performance is an important characteristic for success in many sports, including rugby union. Resistance training is used to increase muscular fitness (i.e., strength, endurance, and power) and may also be effective for improving sprint and jump performances. The aims of this study were to examine the effects of resistance training using 2 different periodized programs (linear and daily undulating) on sprint and jump performances and explore relationships between performance measures. Sixteen male (16.9 ± 1.0 years) adolescent rugby union players participated in 12 weeks of resistance training. A further 10 male (15.5 ± 1.0 years) participants were recruited as a control group. Assessments of strength (box squat), 10- and 20-m sprint (electronically timed), and jump height (maximal unloaded (body mass only) and loaded (body mass + 10 kg) countermovement jumps) were conducted before and after 12 weeks training. Large to very large increases in 1 repetition maximum box squat (linear: 33.9%; p < 0.001; effect size (ES) = 1.64; daily undulating: 44.5%; p < 0.001; ES = 2.33) were observed after training. Small decreases were seen in 10-m (linear: -1.6%; p = 0.171; ES = -0.84; daily undulating: -2.5%; p = 0.038; ES = -0.36) and 20-m (linear: -0.5%; p = 0.506; ES = -0.20; daily undulating: -1.7%; p = 0.047; ES = -0.27) sprint times. Small-to-moderate associations between changes in lower-body strength and improvements in 10- and 20-m sprint times were found. Resistance training increases lower-body strength in adolescent rugby union players and increases in lower-body strength may transfer to improved sprinting performance with improvements after daily undulating periodized resistance training slightly superior.


Assuntos
Desempenho Atlético/fisiologia , Força Muscular , Treinamento Resistido/métodos , Adolescente , Teste de Esforço , Futebol Americano/fisiologia , Humanos , Masculino , Corrida/fisiologia
11.
Pharmacol Res ; 121: 1-13, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28414178

RESUMO

The effects of antipsychotic drugs (APDs) on the adolescent brain are poorly understood despite a dramatic increase in prescription of these drugs in adolescents over the past twenty years. Neuronal systems continue to be remodeled during adolescence. Therefore, when given in adolescence, antipsychotic drugs (APDs) have the potential to affect this remodeling. In this study we investigated the effects of chronic 22-day risperidone treatment (1.3mg/kg/day) in both adolescent and adult rats. We examined short- and long-term changes in behaviour (catalepsy, locomotion and conditioned avoidance response (CAR)), and dopaminergic and serotonergic neurochemistry in the striatum and the nucleus accumbens. Here, we report that, both during chronic treatment and after a lengthy drug-free interval, risperidone induced a sensitised cataleptic response regardless of the age of exposure. Selectively in adolescents, risperidone-induced catalepsy was inversely correlated with striatal dopamine turnover immediately after chronic treatment. After a drug-free interval, a significant proportion of rats with prior adolescent risperidone treatment also failed to acquire CAR to a defined criterion. Our data provide evidence that the same chronic risperidone treatment regimen can induce contrasting short- and long-term neural outcomes in the adolescent and adult brains.


Assuntos
Antipsicóticos/efeitos adversos , Catalepsia/induzido quimicamente , Risperidona/efeitos adversos , Fatores Etários , Animais , Antipsicóticos/administração & dosagem , Monoaminas Biogênicas/análise , Monoaminas Biogênicas/metabolismo , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Catalepsia/sangue , Catalepsia/metabolismo , Catalepsia/fisiopatologia , Corticosterona/sangue , Dopamina/metabolismo , Locomoção/efeitos dos fármacos , Masculino , Ratos , Ratos Sprague-Dawley , Risperidona/administração & dosagem
12.
Annu Rev Nutr ; 34: 117-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25033060

RESUMO

Vitamin D deficiency is prevalent throughout the world, and growing evidence supports a requirement for optimal vitamin D levels for the healthy developing and adult brain. Vitamin D has important roles in proliferation and differentiation, calcium signaling within the brain, and neurotrophic and neuroprotective actions; it may also alter neurotransmission and synaptic plasticity. Recent experimental studies highlight the impact that vitamin D deficiency has on brain function in health and disease. In addition, results from recent animal studies suggest that vitamin D deficiency during adulthood may exacerbate underlying brain disorders and/or worsen recovery from brain stressors. An increasing number of epidemiological studies indicate that vitamin D deficiency is associated with a wide range of neuropsychiatric disorders and neurodegenerative diseases. Vitamin D supplementation is readily available and affordable, and this review highlights the need for further research.


Assuntos
Encéfalo/metabolismo , Modelos Biológicos , Neurogênese , Neurônios/metabolismo , Neurotransmissores/metabolismo , Vitamina D/metabolismo , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Suplementos Nutricionais , Humanos , Transtornos Mentais/etiologia , Transtornos Mentais/prevenção & controle , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/prevenção & controle , Neurônios/citologia , Neurônios/patologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Neurotransmissores/uso terapêutico , Vitamina D/uso terapêutico , Deficiência de Vitamina D/dietoterapia , Deficiência de Vitamina D/mortalidade , Deficiência de Vitamina D/patologia , Deficiência de Vitamina D/fisiopatologia
13.
J Dairy Sci ; 98(7): 4477-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25981077

RESUMO

Lameness is one of the most significant endemic disease problems facing the dairy industry. Claw horn lesions (principally sole hemorrhage, sole ulcer, and white line disease) are some of the most prevalent conditions. Despite the fact that thousands of animals are treated for these conditions every year, experimental evidence is limited on the most effective treatment protocols. A randomized, positively controlled clinical trial was conducted to test the recovery of newly lame cows with claw horn lesions. Animals on 5 farms were locomotion scored every 2wk. Cows were eligible for recruitment if they had 2 nonlame scores followed by a lame score and had a claw horn lesion on a single claw of a single foot. Following a therapeutic trim, enrolled cows were randomly allocated to 1 of 4 treatments: treatment 1-no further treatment (positive control; TRM), treatment 2-trim plus a block on the sound claw (TB), treatment 3-trim plus a 3-d course of the nonsteroidal anti-inflammatory drug (NSAID) ketoprofen (TN), treatment 4-trim plus a block plus ketoprofen (TBN). The primary outcome measure was locomotion score 35d after treatment, by an observer blind to treatment group. Descriptive statistics suggested that treatment groups were balanced at the time of enrollment, that is, randomization was successful. Based on a sound locomotion score (score 0) 35d after treatment, the number of cures was 11 of 45 (24.4%) for TRM, 14 of 39 (35.9%) for TB, 12 of 42 (28.6%) for TN, and 23 of 41 (56.1%) for TBN. The difference between TBN and TRM was significant. To test for confounding imbalances between treatment groups, logistic regression models were built with 2 outcomes, either sound (score 0) or nonlame (score 0 or 1) 35d after treatment. Compared with TRM, animals that received TBN were significantly more likely to cure to a sound outcome. Farm, treatment season, lesion diagnosis, limb affected, treatment operator, and stage of lactation were included in the final models. Our work suggests that lameness cure is maximized with NSAID treatment in addition to the common practices of therapeutic trimming and elevation of the diseased claw using a block when cows are newly and predominantly mildly lame.


Assuntos
Doenças dos Bovinos/terapia , Doenças do Pé/veterinária , Casco e Garras , Animais , Anti-Inflamatórios não Esteroides/uso terapêutico , Bovinos , Doenças dos Bovinos/tratamento farmacológico , Extremidades , Feminino , Doenças do Pé/tratamento farmacológico , Doenças do Pé/terapia , Hemorragia/veterinária , Casco e Garras/irrigação sanguínea , Lactação , Coxeadura Animal/etiologia , Locomoção , Modelos Logísticos , Estações do Ano
14.
Front Neuroendocrinol ; 34(1): 47-64, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22796576

RESUMO

Increasingly vitamin D deficiency is being associated with a number of psychiatric conditions. In particular for disorders with a developmental basis, such as autistic spectrum disorder and schizophrenia the neurobiological plausibility of this association is strengthened by the preclinical data indicating vitamin D deficiency in early life affects neuronal differentiation, axonal connectivity, dopamine ontogeny and brain structure and function. More recently epidemiological associations have been made between low vitamin D and psychiatric disorders not typically associated with abnormalities in brain development such as depression and Alzheimer's disease. Once again the preclinical findings revealing that vitamin D can regulate catecholamine levels and protect against specific Alzheimer-like pathology increase the plausibility of this link. In this review we have attempted to integrate this clinical epidemiology with potential vitamin D-mediated basic mechanisms. Throughout the review we have highlighted areas where we think future research should focus.


Assuntos
Encéfalo/metabolismo , Deficiência de Vitamina D/metabolismo , Deficiência de Vitamina D/psicologia , Vitamina D/metabolismo , Envelhecimento/patologia , Envelhecimento/fisiologia , Envelhecimento/psicologia , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiopatologia , Humanos , Vitamina D/antagonistas & inibidores , Vitamina D/uso terapêutico , Deficiência de Vitamina D/fisiopatologia
15.
Behav Pharmacol ; 25(3): 236-44, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24776491

RESUMO

Developmental vitamin D (DVD) deficiency has been proposed as a risk factor for schizophrenia. DVD-deficient rats show selective cognitive deficits and novelty-induced hyperlocomotion and enhanced locomotor responses from acute treatment with psychomimetic drugs, such as amphetamine and MK-801. Here we aimed to examine the effect of a drug from a different class of psychomimetic/psychoactive compounds, Δ9-tetrahydrocannabinol (THC), on tasks of relevance to the cognitive and positive symptoms of schizophrenia. The aim of this study was to investigate whether DVD deficiency modulates the behavioural effects of THC on tests of delay-dependent memory, sensorimotor gating and locomotion. Adult control and DVD-deficient rats were injected with THC (0, 0.3, 0.6, 1.25, 2.5 mg/kg) 15 min before a delay match to sample (DMTS) task using variable delays (0-24 s). A separate group of rats was injected with either 2.5 mg/kg THC or vehicle before tests of either prepulse inhibition (PPI) of the acoustic startle response or in the open field. Control and DVD-deficient rats showed a similar dose-dependent impairment in performance on the DMTS. The greatest impairment was observed at 2.5 mg/kg for all delays (0-24 s). DVD-deficient rats showed THC-induced enhancement of PPI, which was not observed in control rats. There was no effect of maternal diet on acoustic startle response or locomotor responses in the open field. This study reports the novel findings that DVD-deficient rats were more sensitive to the acute effects of THC on PPI. It appears that prenatal vitamin D deficiency has long-term effects on sensitivity to the behavioural effects of cannabinoids.


Assuntos
Analgésicos não Narcóticos/farmacologia , Dronabinol/farmacologia , Inibição Pré-Pulso/efeitos dos fármacos , Deficiência de Vitamina D/tratamento farmacológico , Estimulação Acústica/efeitos adversos , Animais , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Filtro Sensorial/efeitos dos fármacos , Deficiência de Vitamina D/induzido quimicamente , Deficiência de Vitamina D/complicações
16.
Behav Brain Res ; 461: 114845, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38184206

RESUMO

Biological sex influences decision-making processes in significant ways, differentiating the responses animals choose when faced with a range of stimuli. The neurobiological underpinnings that dictate sex differences in decision-making tasks remains an important open question, yet single-sex studies of males form most studies in behavioural neuroscience. Here we used female and male BALB/c mice on two spatial learning and memory tasks and examined the expression of perineuronal nets (PNNs) and parvalbumin interneurons (PV) in regions correlated with spatial memory. Mice underwent the aversive active place avoidance (APA) task or the appetitive trial-unique nonmatching-to-location (TUNL) touchscreen task. Mice in the APA cohort learnt to avoid the foot-shock and no differences were observed on key measures of the task nor in the number and intensity of PNNs and PV. On the delay but not separation manipulation in the TUNL task, females received more incorrect trials and less correct trials compared to males. Furthermore, females in this cohort exhibited higher intensity PNNs and PV cells in the agranular and granular retrosplenial cortex, compared to males. These data show that female and male mice perform similarly on spatial learning tasks. However, sex differences in neural circuitry may underly differences in making decisions under conditions of uncertainty on an appetitive task. These data emphasise the importance of using mice of both sexes in studies of decision-making neuroscience.


Assuntos
Interneurônios , Neurônios , Animais , Feminino , Masculino , Camundongos , Matriz Extracelular , Interneurônios/metabolismo , Neurônios/metabolismo , Parvalbuminas/metabolismo , Aprendizagem Espacial , Incerteza
17.
Behav Brain Res ; 454: 114649, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37643667

RESUMO

Dopamine levels in the dorsomedial striatum (DMS) are highly dynamic and are thought to underly the encoding of action-outcome associations. Although it is known that amphetamine disrupts the learning that is required for goal-directed action, the role of D1 and D2 receptors in this process has not been established. In this study, we examined the role of D1 and D2 receptor antagonists on learning in response to amphetamine. We used the outcome-specific devaluation task to examine goal-directed action in male C57BL6/J mice treated systemically with either a D1 antagonist (SCH-23990; 0.01 mg/kg) or a D2 antagonist (raclopride; 0.5 mg/kg) and then administered amphetamine (1 mg/kg). The mice were injected repeatedly throughout the instrumental training phase of the task to assess the impact on the learning of action-outcomes, and the subsequent choice test assessing performance of goal-directed action was conducted drug free. Effects of chronic drug administration on locomotor behaviour was assessed before and after the choice test. Treatment during learning with either amphetamine, or the D1 or D2 antagonists, impaired the subsequent performance of goal-directed action. The amphetamine-induced impairment in goal-directed action was reversed in mice treated with raclopride, but not when treated with SCH-23990. By contrast, amphetamine-induced hyperactivity was reversed in mice treated with SCH-23990, but not in mice treated with raclopride. Taken together, these data support the role of a balance of dopamine receptor signalling after amphetamine treatment. While overall D1 receptor availability is necessary to promote learning, in a state of elevated dopamine, modifying D2 receptor function can ameliorate learning deficits.


Assuntos
Anfetamina , Dopamina , Masculino , Animais , Camundongos , Anfetamina/farmacologia , Racloprida/farmacologia , Condicionamento Clássico , Camundongos Endogâmicos C57BL , Receptores de Dopamina D2
18.
Neuropharmacology ; 234: 109550, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37085011

RESUMO

The cognitive symptoms of schizophrenia are wide ranging and include impaired goal-directed action. This could be driven by an increase in dopamine transmission in the dorsomedial striatum, a pathophysiological hallmark of schizophrenia. Although commonly associated with psychotic symptoms, dopamine signalling in this region also modulates associative learning that aids in the execution of actions. To gain a better understanding of the role of subcortical dopamine in learning and decision-making, we assessed goal-directed action in male mice using the cross-species outcome-specific devaluation task (ODT). First, we administered systemic amphetamine during training to determine the impact of altered dopaminergic signaling on associative learning. Second, we used pathway-specific chemogenetic approaches to activate the dorsomedial and ventral striatal pathways (that originate in the midbrain) to separately assess learning and performance. Amphetamine treatment during learning led to a dose-dependent impairment in goal-directed action. Activation of both striatal pathways during learning also impaired performance. However, when these pathways were activated during choice, only activation of the ventral pathway impaired goal-directed action. This suggests that elevated transmission in the dorsomedial striatal pathway impairs associative learning processes that guide the goal-directed execution of actions. By contrast, elevated transmission of the ventral striatal pathway disrupts the encoding of outcome values that are important for both associative learning and choice performance. These findings highlight the differential roles of the dorsomedial and ventral inputs into the striatum in goal-directed action and provides insight into how striatal dopamine signaling may contribute to the cognitive problems in those with schizophrenia.


Assuntos
Dopamina , Objetivos , Camundongos , Masculino , Animais , Corpo Estriado/fisiologia , Neostriado/fisiologia , Mesencéfalo
19.
Biol Psychiatry Glob Open Sci ; 3(4): 1030-1041, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37881585

RESUMO

Background: Corticostriatal circuits, particularly the dorsomedial striatum (DMS) and lateral orbitofrontal cortex, are critical for navigating reversal learning under probabilistic uncertainty. These same areas are implicated in the reversal learning impairments observed in individuals with psychosis as well as their psychotic symptoms, suggesting that they may share a common neurobiological substrate. To address this question, we used psychostimulant exposure and specific activation of the DMS during reversal learning in mice to assess corticostriatal activity. Methods: We used amphetamine treatment to induce psychosis-relevant neurobiology in male mice during reversal learning and to examine pathway-specific corticostriatal activation. To determine the causal role of DMS activity, we used chemogenetics to drive midbrain inputs during a range of probabilistic contingencies. Results: Mice treated with amphetamine showed altered punishment learning, which was associated with decreased shifting after losses and increased perseverative errors after reversals. Reversal learning performance and strategies were dependent on increased activity in lateral orbitofrontal cortex to DMS circuits as well as in the DMS itself. Specific activation of midbrain to DMS circuits also decreased shifting after losses and reversal learning performance. However, these alterations were dependent on the probabilistic contingency. Conclusions: Our work suggests that the DMS plays a multifaceted role in reversal learning. Increasing DMS activity impairs multiple reversal learning processes dependent on the level of uncertainty, confirming its role in the maintenance and selection of incoming cortical inputs. Together, these outcomes suggest that elevated dopamine levels in the DMS could contribute to decision-making impairments in individuals with psychosis.

20.
AIMS Neurosci ; 9(1): 31-56, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35434279

RESUMO

Vitamin D deficiency is prevalent in adults and is associated with cognitive impairment. However, the mechanism by which adult vitamin D (AVD) deficiency affects cognitive function remains unclear. We examined spatial memory impairment in AVD-deficient BALB/c mice and its underlying mechanism by measuring spine density, long term potentiation (LTP), nitric oxide (NO), neuronal nitric oxide synthase (nNOS), and endothelial NOS (eNOS) in the hippocampus. Adult male BALB/c mice were fed a control or vitamin D deficient diet for 20 weeks. Spatial memory performance was measured using an active place avoidance (APA) task, where AVD-deficient mice had reduced latency entering the shock zone compared to controls. We characterised hippocampal spine morphology in the CA1 and dentate gyrus (DG) and made electrophysiological recordings in the hippocampus of behaviourally naïve mice to measure LTP. We next measured NO, as well as glutathione, lipid peroxidation and oxidation of protein products and quantified hippocampal immunoreactivity for nNOS and eNOS. Spine morphology analysis revealed a significant reduction in the number of mushroom spines in the CA1 dendrites but not in the DG. There was no effect of diet on LTP. However, hippocampal NO levels were depleted whereas other oxidation markers were unaltered by AVD deficiency. We also showed a reduced nNOS, but not eNOS, immunoreactivity. Finally, vitamin D supplementation for 10 weeks to AVD-deficient mice restored nNOS immunoreactivity to that seen in in control mice. Our results suggest that lower levels of NO and reduced nNOS immunostaining contribute to hippocampal-dependent spatial learning deficits in AVD-deficient mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA