Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Langmuir ; 34(35): 10397-10406, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30095272

RESUMO

Microencapsulation of phase-change materials is of great importance for thermal energy-storage applications. In this work, we report on a facile approach to enclose paraffin in mechanically strong submicron silica capsules without the addition of any classical organic surfactants. A liquid silica precursor polymer, hyperbranched polyethoxysiloxane (PEOS), is used as both silica source and stabilizer of oil-in-water emulsions because of its hydrolysis-induced interfacial activity. Hydrophobic paraffin is microencapsulated in silica with quantitative efficiency simply by emulsifying the mixture of molten paraffin and PEOS in water under ultrasonication or high-shear homogenization. The size of the capsules can be controlled by emulsification energy and rate of subsequent stirring. The silica shell, whose thickness can be easily tuned by varying the paraffin to PEOS ratio, acts as an effective barrier layer retarding significantly the evaporation of enclosed substances; meanwhile, the microencapsulated paraffin maintains the excellent phase-change performance. This technique offers a low-cost, highly scalable, and environmentally friendly process for microencapsulation of paraffin phase-change materials.

2.
Sci Rep ; 7: 39910, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-28054589

RESUMO

Highly loaded polymer/clay nanocomposites with layered structures are emerging as robust fire retardant surface coatings. However, time-intensive sequential deposition processes, e.g. layer-by-layer strategies, hinders obtaining large coating thicknesses and complicates an implementation into existing technologies. Here, we demonstrate a single-step, water-borne approach to prepare thick, self-assembling, hybrid fire barrier coatings of sodium carboxymethyl cellulose (CMC)/montmorillonite (MTM) with well-defined, bioinspired brick-wall nanostructure, and showcase their application on textile. The coating thickness on the textile is tailored using different concentrations of CMC/MTM (1-5 wt%) in the coating bath. While lower concentrations impart conformal coatings of fibers, thicker continuous coatings are obtained on the textile surface from highest concentration. Comprehensive fire barrier and fire retardancy tests elucidate the increasing fire barrier and retardancy properties with increasing coating thickness. The materials are free of halogen and heavy metal atoms, and are sourced from sustainable and partly even renewable building blocks. We further introduce an amphiphobic surface modification on the coating to impart oil and water repellency, as well as self-cleaning features. Hence, our study presents a generic, environmentally friendly, scalable, and one-pot coating approach that can be introduced into existing technologies to prepare bioinspired, thick, fire barrier nanocomposite coatings on diverse surfaces.

3.
ACS Appl Mater Interfaces ; 8(42): 28412-28417, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27622318

RESUMO

Here we present a novel laser process to generate carbon nanofiber nonwovens from polyacrylonitrile. We produce carbon nanofabrics via electrospinning followed by infrared laser-induced carbonization, facilitating high surface area and well-controlled hierarchical porosity. The process allows precise control of the carbonization conditions and provides high nanoscale porosity. In comparison with classical thermal carbonization, the laser process produces much higher surface areas and smaller pores. Furthermore, we investigate the carbonization performance and the morphology of polyacrylonitrile nanofibers compounded with graphene nanoplatelet fillers.

4.
Environ Sci Technol ; 37(5): 1008-12, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12666933

RESUMO

The aim of this study was to highlight the possibility of using recycled wool-based nonwoven material as a sorbent in an oil spill cleanup. This material sorbed higher amounts of base oil SN 150 than diesel or crude oil from the surface of a demineralized or artificial seawater bath. Superficial modification of material with the biopolymer chitosan and low-temperature air plasma led to a slight decrease of sorption capacity. Loose fibers of the same origin as nonwoven material have significantly higher sorption capacities than investigated nonwoven material. White light scanning interferometry analysis of the fibers suggested that roughness of the wool fiber surface has an important role in oil sorption. The laboratory experiments demonstrated that this material is reusable. Recycled wool-based nonwoven material showed good sorption properties and adequate reusability, indicating that a material based on natural fibers could be a viable alternative to commercially available synthetic materials that have poor biodegradability.


Assuntos
Carcinógenos Ambientais , Conservação dos Recursos Naturais , Gasolina , Petróleo , Poluentes do Solo , Lã/química , Adsorção , Animais , Biodegradação Ambiental , Poluição Ambiental/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA