RESUMO
Transcriptional enhancer elements are responsible for orchestrating the temporal and spatial control over gene expression that is crucial for programming cell identity during development1-3. Here we describe a novel enhancer element that is important for regulating the expression of Prox1 in lymphatic endothelial cells. This evolutionarily conserved enhancer is bound by key lymphatic transcriptional regulators including GATA2, FOXC2, NFATC1 and PROX1. Genome editing of the enhancer to remove five nucleotides encompassing the GATA2-binding site resulted in perinatal death of homozygous mutant mice due to profound lymphatic vascular defects. Lymphatic endothelial cells in enhancer mutant mice exhibited reduced expression of genes characteristic of lymphatic endothelial cell identity and increased expression of genes characteristic of haemogenic endothelium, and acquired the capacity to generate haematopoietic cells. These data not only reveal a transcriptional enhancer element important for regulating Prox1 expression and lymphatic endothelial cell identity but also demonstrate that the lymphatic endothelium has haemogenic capacity, ordinarily repressed by Prox1.
Assuntos
Células Endoteliais , Elementos Facilitadores Genéticos , Hematopoese , Vasos Linfáticos , Animais , Camundongos , Células Endoteliais/metabolismo , Elementos Facilitadores Genéticos/genética , Hematopoese/genética , Proteínas de Homeodomínio/metabolismo , Vasos Linfáticos/citologia , Vasos Linfáticos/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Invasive rodents are a major cause of environmental damage and biodiversity loss, particularly on islands. Unlike insects, genetic biocontrol strategies including population-suppressing gene drives with biased inheritance have not been developed in mice. Here, we demonstrate a gene drive strategy (tCRISPR) that leverages super-Mendelian transmission of the t haplotype to spread inactivating mutations in a haplosufficient female fertility gene (Prl). Using spatially explicit individual-based in silico modeling, we show that tCRISPR can eradicate island populations under a range of realistic field-based parameter values. We also engineer transgenic tCRISPR mice that, crucially, exhibit biased transmission of the modified t haplotype and Prl mutations at levels our modeling predicts would be sufficient for eradication. This is an example of a feasible gene drive system for invasive alien rodent population control.
Assuntos
Biodiversidade , Tecnologia de Impulso Genético , Camundongos , Feminino , Animais , Roedores , Genética Populacional , Repetições Palindrômicas Curtas Agrupadas e Regularmente EspaçadasRESUMO
BACKGROUND: The development of sequence-specific precision treatments like CRISPR gene editing therapies for Duchenne muscular dystrophy (DMD) requires sequence humanized animal models to enable the direct clinical translation of tested strategies. The current available integrated transgenic mouse model containing the full-length human DMD gene, Tg(DMD)72Thoen/J (hDMDTg), has been found to have two copies of the transgene per locus in a tail-to-tail orientation, which does not accurately simulate the true (single) copy number of the DMD gene. This duplication also complicates analysis when testing CRISPR therapy editing outcomes, as large genetic alterations and rearrangements can occur between the cut sites on the two transgenes. RESULTS: To address this, we performed long read nanopore sequencing on hDMDTg mice to better understand the structure of the duplicated transgenes. Following that, we performed a megabase-scale deletion of one of the transgenes by CRISPR zygotic microinjection to generate a single-copy, full-length, humanized DMD transgenic mouse model (hDMDTgSc). Functional, molecular, and histological characterisation shows that the single remaining human transgene retains its function and rescues the dystrophic phenotype caused by endogenous murine Dmd knockout. CONCLUSIONS: Our unique hDMDTgSc mouse model simulates the true copy number of the DMD gene, and can potentially be used for the further generation of DMD disease models that would be better suited for the pre-clinical assessment and development of sequence specific CRISPR therapies.
Assuntos
Sistemas CRISPR-Cas , Modelos Animais de Doenças , Camundongos Transgênicos , Distrofia Muscular de Duchenne , Transgenes , Animais , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Camundongos , Humanos , Edição de Genes/métodos , Distrofina/genética , Duplicação Gênica , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genéticaRESUMO
Precise genomic modification using prime editing (PE) holds enormous potential for research and clinical applications. In this study, we generated all-in-one prime editing (PEA1) constructs that carry all the components required for PE, along with a selection marker. We tested these constructs (with selection) in HEK293T, K562, HeLa and mouse embryonic stem (ES) cells. We discovered that PE efficiency in HEK293T cells was much higher than previously observed, reaching up to 95% (mean 67%). The efficiency in K562 and HeLa cells, however, remained low. To improve PE efficiency in K562 and HeLa, we generated a nuclease prime editor and tested this system in these cell lines as well as mouse ES cells. PE-nuclease greatly increased prime editing initiation, however, installation of the intended edits was often accompanied by extra insertions derived from the repair template. Finally, we show that zygotic injection of the nuclease prime editor can generate correct modifications in mouse fetuses with up to 100% efficiency.
Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Animais , Proteína 9 Associada à CRISPR/genética , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células HEK293 , Células HeLa , Humanos , Células K562 , Camundongos , Plasmídeos/genética , ZigotoRESUMO
Animal models are needed to develop interventions to prevent or treat intrauterine growth restriction (IUGR). Foetal growth rates and effects of in utero exposures differ between sexes, but little is known about sex-specific effects of increasing litter size. We established a murine IUGR model using pregnancies generated by multiple embryo transfers, and evaluated sex-specific responses to increasing litter size. CBAF1 embryos were collected at gestation day 0.5 (GD0.5) and 6, 8, 10 or 12 embryos were transferred into each uterine horn of pseudopregnant female CD1 mice (n = 32). Foetal and placental outcomes were measured at GD18.5. In the main experiment, foetuses were genotyped (Sry) for analysis of sex-specific outcomes. The number of implantation sites (P = 0.033) and litter size (number of foetuses, P = 0.008) correlated positively with the number of embryos transferred, while placental weight correlated negatively with litter size (both P < 0.01). The relationship between viable litter size and foetal weight differed between sexes (interaction P = 0.002), such that foetal weights of males (P = 0.002), but not females (P = 0.233), correlated negatively with litter size. Placental weight decreased with increasing litter size (P < 0.001) and was lower in females than males (P = 0.020). Our results suggest that male foetuses grow as fast as permitted by nutrient supply, whereas the female maintains placental reserve capacity. This strategy reflecting sex-specific gene expression is likely to place the male foetus at greater risk of death in the event of a 'second hit'.
Assuntos
Retardo do Crescimento Fetal , Placenta , Animais , Modelos Animais de Doenças , Transferência Embrionária , Feminino , Peso Fetal , Tamanho da Ninhada de Vivíparos , Masculino , Camundongos , GravidezRESUMO
Mutations in the GAP activity toward RAGs 1 (GATOR1) complex genes (DEPDC5, NPRL2 and NPRL3) have been associated with focal epilepsy and focal cortical dysplasia (FCD). GATOR1 functions as an inhibitor of the mTORC1 signalling pathway, indicating that the downstream effects of mTORC1 deregulation underpin the disease. However, the vast majority of putative disease-causing variants have not been functionally assessed for mTORC1 repression activity. Here, we develop a novel in vitro functional assay that enables rapid assessment of GATOR1-gene variants. Surprisingly, of the 17 variants tested, we show that only six showed significantly impaired mTORC1 inhibition. To further investigate variant function in vivo, we generated a conditional Depdc5 mouse which modelled a 'second-hit' mechanism of disease. Generation of Depdc5 null 'clones' in the embryonic brain resulted in mTORC1 hyperactivity and modelled epilepsy and FCD symptoms including large dysmorphic neurons, defective migration and lower seizure thresholds. Using this model, we validated DEPDC5 variant F164del to be loss-of-function. We also show that Q542P is not functionally compromised in vivo, consistent with our in vitro findings. Overall, our data show that mTORC1 deregulation is the central pathological mechanism for GATOR1 variants and also indicates that a significant proportion of putative disease variants are pathologically inert, highlighting the importance of GATOR1 variant functional assessment.
Assuntos
Epilepsias Parciais/metabolismo , Epilepsia/metabolismo , Proteínas Ativadoras de GTPase/genética , Malformações do Desenvolvimento Cortical do Grupo I/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Epilepsias Parciais/genética , Epilepsia/genética , Proteínas Ativadoras de GTPase/metabolismo , Técnicas Genéticas , Células HEK293 , Humanos , Malformações do Desenvolvimento Cortical do Grupo I/genética , Camundongos , Camundongos Knockout , MutaçãoRESUMO
BACKGROUND: Congenital malformations can be manifested as combinations of phenotypes that co-occur more often than expected by chance. In many such cases, it has proved difficult to identify a genetic cause. We sought the genetic cause of cardiac, vertebral, and renal defects, among others, in unrelated patients. METHODS: We used genomic sequencing to identify potentially pathogenic gene variants in families in which a person had multiple congenital malformations. We tested the function of the variant by using assays of in vitro enzyme activity and by quantifying metabolites in patient plasma. We engineered mouse models with similar variants using the CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 system. RESULTS: Variants were identified in two genes that encode enzymes of the kynurenine pathway, 3-hydroxyanthranilic acid 3,4-dioxygenase (HAAO) and kynureninase (KYNU). Three patients carried homozygous variants predicting loss-of-function changes in the HAAO or KYNU proteins (HAAO p.D162*, HAAO p.W186*, or KYNU p.V57Efs*21). Another patient carried heterozygous KYNU variants (p.Y156* and p.F349Kfs*4). The mutant enzymes had greatly reduced activity in vitro. Nicotinamide adenine dinucleotide (NAD) is synthesized de novo from tryptophan through the kynurenine pathway. The patients had reduced levels of circulating NAD. Defects similar to those in the patients developed in the embryos of Haao-null or Kynu-null mice owing to NAD deficiency. In null mice, the prevention of NAD deficiency during gestation averted defects. CONCLUSIONS: Disruption of NAD synthesis caused a deficiency of NAD and congenital malformations in humans and mice. Niacin supplementation during gestation prevented the malformations in mice. (Funded by the National Health and Medical Research Council of Australia and others.).
Assuntos
3-Hidroxiantranilato 3,4-Dioxigenase/genética , Anormalidades Congênitas/genética , Suplementos Nutricionais , Hidrolases/genética , NAD/deficiência , Niacina/uso terapêutico , 3-Hidroxiantranilato 3,4-Dioxigenase/metabolismo , Canal Anal/anormalidades , Animais , Anormalidades Congênitas/prevenção & controle , Modelos Animais de Doenças , Esôfago/anormalidades , Feminino , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/prevenção & controle , Humanos , Hidrolases/metabolismo , Rim/anormalidades , Deformidades Congênitas dos Membros/genética , Deformidades Congênitas dos Membros/prevenção & controle , Masculino , Camundongos , Camundongos Knockout , Mutação , NAD/biossíntese , NAD/genética , Análise de Sequência de DNA , Coluna Vertebral/anormalidades , Traqueia/anormalidadesRESUMO
Spermatogenesis is the male version of gametogenesis, where germ cells are transformed into haploid spermatozoa through a tightly controlled series of mitosis, meiosis and differentiation. This process is reliant on precisely timed changes in gene expression controlled by several different hormonal and transcriptional mechanisms. One important transcription factor is SRY-box transcription factor 3 (SOX3), which is transiently expressed within the uncommitted spermatogonial stem cell population. Sox3-null mouse testes exhibit a block in spermatogenesis, leading to infertility or subfertility. However, the molecular role of SOX3 during spermatogonial differentiation remains poorly understood because the genomic regions targeted by this transcription factor have not been identified. In this study we used chromatin immunoprecipitation sequencing to identify and characterise the endogenous genome-wide binding profile of SOX3 in mouse testes at Postnatal Day 7. We show that neurogenin3 (Neurog3 or Ngn3) is directly targeted by SOX3 in spermatogonial stem cells via a novel testes-specific binding site. We also implicate SOX3, for the first time, in direct regulation of histone gene expression and demonstrate that this function is shared by both neural progenitors and testes, and with another important transcription factor required for spermatogenesis, namely promyelocytic leukaemia zinc-finger (PLZF). Together, these data provide new insights into the function of SOX3 in different stem cell contexts.
Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Espermatogênese/fisiologia , Testículo/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição SOXB1/genéticaRESUMO
De novo and inherited mutations of X-chromosome cell adhesion molecule protocadherin 19 (PCDH19) cause frequent, highly variable epilepsy, autism, cognitive decline and behavioural problems syndrome. Intriguingly, hemizygous null males are not affected while heterozygous females are, contradicting established X-chromosome inheritance. The disease mechanism is not known. Cellular mosaicism is the likely driver. We have identified p54nrb/NONO, a multifunctional nuclear paraspeckle protein with known roles in nuclear hormone receptor gene regulation, as a PCDH19 protein interacting partner. Using breast cancer cells we show that PCDH19-NONO complex is a positive co-regulator of ERα-mediated gene expression. Expression of mutant PCDH19 affects at least a subset of known ERα-regulated genes. These data are consistent with our findings that genes regulated by nuclear hormone receptors and those involved in the metabolism of neurosteroids in particular are dysregulated in PCDH19-epilepsy girls and affected mosaic males. Overall we define and characterize a novel mechanism of gene regulation driven by PCDH19, which is mediated by paraspeckle constituent NONO and is ERα-dependent. This PCDH19-NONO-ERα axis is of relevance not only to PCDH19-epilepsy and its comorbidities but likely also to ERα and generally nuclear hormone receptor-associated cancers.
Assuntos
Caderinas/metabolismo , Proteínas Associadas à Matriz Nuclear/metabolismo , Fatores de Transcrição de Octâmero/metabolismo , Proteínas de Ligação a RNA/metabolismo , Neoplasias da Mama/metabolismo , Caderinas/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Epilepsia/genética , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/metabolismo , Expressão Gênica , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Deficiência Intelectual/genética , Mutação , Proteínas Associadas à Matriz Nuclear/genética , Fatores de Transcrição de Octâmero/genética , Linhagem , Protocaderinas , Proteínas de Ligação a RNA/genéticaRESUMO
PCDH19-Girls Clustering Epilepsy (PCDH19-GCE) is a childhood epileptic encephalopathy characterised by a spectrum of neurodevelopmental problems. PCDH19-GCE is caused by heterozygous loss-of-function mutations in the X-chromosome gene, Protocadherin 19 (PCDH19) encoding a cell-cell adhesion molecule. Intriguingly, hemizygous males are generally unaffected. As PCDH19 is subjected to random X-inactivation, heterozygous females are comprised of a mosaic of cells expressing either the normal or mutant allele, which is thought to drive pathology. Despite being the second most prevalent monogeneic cause of epilepsy, little is known about the role of PCDH19 in brain development. In this study we show that PCDH19 is highly expressed in human neural stem and progenitor cells (NSPCs) and investigate its function in vitro in these cells of both mouse and human origin. Transcriptomic analysis of mouse NSPCs lacking Pcdh19 revealed changes to genes involved in regulation of neuronal differentiation, and we subsequently show that loss of Pcdh19 causes increased NSPC neurogenesis. We reprogramed human fibroblast cells harbouring a pathogenic PCDH19 mutation into human induced pluripotent stem cells (hiPSC) and employed neural differentiation of these to extend our studies into human NSPCs. As in mouse, loss of PCDH19 function caused increased neurogenesis, and furthermore, we show this is associated with a loss of human NSPC polarity. Overall our data suggests a conserved role for PCDH19 in regulating mammalian cortical neurogenesis and has implications for the pathogenesis of PCDH19-GCE. We propose that the difference in timing or "heterochrony" of neuronal cell production originating from PCDH19 wildtype and mutant NSPCs within the same individual may lead to downstream asynchronies and abnormalities in neuronal network formation, which in-part predispose the individual to network dysfunction and epileptic activity.
Assuntos
Caderinas/biossíntese , Epilepsia/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Animais , Caderinas/genética , Células Cultivadas , Análise por Conglomerados , Epilepsia/patologia , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Camundongos , Camundongos Knockout , Células-Tronco Neurais/patologia , ProtocaderinasRESUMO
Protocadherin 19 (PCDH19) female limited epilepsy (PCDH19-FE; also known as epilepsy and mental retardation limited to females, EFMR; MIM300088) is an infantile onset epilepsy syndrome with or without intellectual disability (ID) and autism. We investigated transcriptomes of PCDH19-FE female and control primary skin fibroblasts, which are endowed to metabolize neurosteroid hormones. We identified a set of 94 significantly dysregulated genes in PCDH19-FE females. Intriguingly, 43 of the 94 genes (45.7%) showed gender-biased expression; enrichment of such genes was highly significant (P = 2.51E-47, two-tailed Fisher exact test). We further investigated the AKR1C1-3 genes, which encode crucial steroid hormone-metabolizing enzymes whose key products include allopregnanolone and estradiol. Both mRNA and protein levels of AKR1C3 were significantly decreased in PCDH19-FE patients. In agreement with this, the blood levels of allopregnanolone were also (P < 0.01) reduced. In conclusion, we show that the deficiency of neurosteroid allopregnanolone, one of the most potent GABA receptor modulators, may contribute to PCDH19-FE. Overall our findings provide evidence for a role of neurosteroids in epilepsy, ID and autism and create realistic opportunities for targeted therapeutic interventions.
Assuntos
Caderinas/genética , Epilepsia/sangue , Epilepsia/genética , Mutação , Pregnanolona/deficiência , 3-Hidroxiesteroide Desidrogenases/genética , 3-Hidroxiesteroide Desidrogenases/metabolismo , Adolescente , Adulto , Idade de Início , Membro C3 da Família 1 de alfa-Ceto Redutase , Criança , Pré-Escolar , Análise por Conglomerados , Epilepsia/diagnóstico , Feminino , Fibroblastos/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Hidroxiprostaglandina Desidrogenases/genética , Hidroxiprostaglandina Desidrogenases/metabolismo , Lactente , Recém-Nascido , Deficiência Intelectual/genética , Pessoa de Meia-Idade , Fenótipo , Pregnanolona/sangue , Protocaderinas , Reprodutibilidade dos Testes , Transdução de Sinais , Adulto JovemRESUMO
OBJECTIVE: Focal epilepsies are the most common form observed and have not generally been considered to be genetic in origin. Recently, we identified mutations in DEPDC5 as a cause of familial focal epilepsy. In this study, we investigated whether mutations in the mammalian target of rapamycin (mTOR) regulators, NPRL2 and NPRL3, also contribute to cases of focal epilepsy. METHODS: We used targeted capture and next-generation sequencing to analyze 404 unrelated probands with focal epilepsy. We performed exome sequencing on two families with multiple members affected with focal epilepsy and linkage analysis on one of these. RESULTS: In our cohort of 404 unrelated focal epilepsy patients, we identified five mutations in NPRL2 and five in NPRL3. Exome sequencing analysis of two families with focal epilepsy identified NPRL2 and NPRL3 as the top candidate-causative genes. Some patients had focal epilepsy associated with brain malformations. We also identified 18 new mutations in DEPDC5. INTERPRETATION: We have identified NPRL2 and NPRL3 as two new focal epilepsy genes that also play a role in the mTOR-signaling pathway. Our findings show that mutations in GATOR1 complex genes are the most significant cause of familial focal epilepsy identified to date, including cases with brain malformations. It is possible that deregulation of cellular growth control plays a more important role in epilepsy than is currently recognized.
Assuntos
Epilepsias Parciais/genética , Proteínas Ativadoras de GTPase/genética , Complexos Multiproteicos/metabolismo , Proteínas Repressoras/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/genética , Exoma , Perfilação da Expressão Gênica , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Mutação , Linhagem , Análise de Sequência de DNARESUMO
Natural antisense transcripts (NATs) are involved in cellular development and regulatory processes. Multiple NATs at the Sox4 gene locus are spatiotemporally regulated throughout murine cerebral corticogenesis. In the study, we evaluated the potential functional role of Sox4 NATs at Sox4 gene locus. We demonstrated Sox4 sense and NATs formed dsRNA aggregates in the cytoplasm of brain cells. Over expression of Sox4 NATs in NIH/3T3 cells generally did not alter the level of Sox4 mRNA expression or protein translation. Upregulation of a Sox4 NAT known as Sox4ot1 led to the production of a novel small RNA, Sox4_sir3. Its biogenesis is Dicer1-dependent and has characteristics resemble piRNA. Expression of Sox4_sir3 was observed in the marginal and germinative zones of the developing and postnatal brains suggesting a potential role in regulating neurogenesis. We proposed that Sox4 sense-NATs serve as Dicer1-dependent templates to produce a novel endo-siRNA- or piRNA-like Sox4_sir3.
Assuntos
Encéfalo/crescimento & desenvolvimento , RNA Antissenso/genética , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição SOXC/genética , Animais , Encéfalo/metabolismo , Citoplasma/metabolismo , RNA Helicases DEAD-box/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Células NIH 3T3 , Neurogênese , RNA Antissenso/metabolismo , RNA de Cadeia Dupla/genética , Ribonuclease III/metabolismo , Fatores de Transcrição SOXC/metabolismoRESUMO
OBJECTIVES: IGSF1 deficiency syndrome (IDS) is a recently described X-linked congenital central hypothyroidism disorder characterized by loss-of-function mutations in the immunoglobulin superfamily member 1 (IGSF1) gene. The phenotypic spectrum and intrafamilial variability associated with IDS remain unclear due to a paucity of large, well-characterized pedigrees. Here, we present phenotypic analysis and molecular characterization of a five-generation pedigree with IGSF1 deficiency containing 10 affected males. PATIENTS AND METHODS: Pituitary function was assessed in all available family members (n = 8 affected males and n = 5 carrier females). Molecular characterization of the family was performed by Sanger sequencing of PCR products amplified from the IGSF1 locus and by array comparative genomic hybridization. RESULTS: A 42-kb IGSF1 deletion spanning the entire coding sequence was identified in all affected males. TSH deficiency, although subclinical in one case, was identified in all affected males (n = 8). PRL and GH deficiency were also present in 5 of 6 and 4 of 8 affected males, respectively. In contrast to previous reports, macroorchidism was not detected in any of the four affected males who were examined for this feature. Only 1 of 5 carrier females had pituitary dysfunction (TSH and GH deficiency). CONCLUSION: Individuals with identical IGSF1 deletions can exhibit variable pituitary hormone deficiencies, of which overt TSH deficiency is the most consistent feature. We also show that macroorchidism is not obligatory in males with IDS. Mutations of IGSF1 should therefore be considered in males with isolated hypopituitarism that includes TSH deficiency.
Assuntos
Hipotireoidismo Congênito/genética , Doenças Genéticas Ligadas ao Cromossomo X , Imunoglobulinas/genética , Proteínas de Membrana/genética , Deleção de Sequência , Hibridização Genômica Comparativa , Feminino , Humanos , Hipopituitarismo/genética , Masculino , Mutação , LinhagemRESUMO
Benign familial infantile epilepsy (BFIE) is a self-limited seizure disorder that occurs in infancy and has autosomal-dominant inheritance. We have identified heterozygous mutations in PRRT2, which encodes proline-rich transmembrane protein 2, in 14 of 17 families (82%) affected by BFIE, indicating that PRRT2 mutations are the most frequent cause of this disorder. We also report PRRT2 mutations in five of six (83%) families affected by infantile convulsions and choreoathetosis (ICCA) syndrome, a familial syndrome in which infantile seizures and an adolescent-onset movement disorder, paroxysmal kinesigenic choreoathetosis (PKC), co-occur. These findings show that mutations in PRRT2 cause both epilepsy and a movement disorder. Furthermore, PRRT2 mutations elicit pleiotropy in terms of both age of expression (infancy versus later childhood) and anatomical substrate (cortex versus basal ganglia).
Assuntos
Atetose/genética , Coreia/genética , Epilepsia Neonatal Benigna/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Convulsões/genética , Idade de Início , Animais , Sequência de Bases , Encéfalo/patologia , Pré-Escolar , Cromossomos Humanos Par 16/genética , Humanos , Lactente , Masculino , Camundongos , Dados de Sequência Molecular , Mutação , LinhagemRESUMO
Non-clustered protocadherins (ncPcdhs) are adhesive molecules with spatio-temporally regulated overlapping expression in the developing nervous system. Although their unique role in neurogenesis has been widely studied, their combinatorial role in brain physiology and pathology is poorly understood. Using probabilistic cell typing by in situ sequencing, we demonstrate combinatorial inter- and intra-familial expression of ncPcdhs in the developing mouse cortex and hippocampus, at single-cell resolution. We discovered the combinatorial expression of Protocadherin-19 (Pcdh19), a protein involved in PCDH19-clustering epilepsy, with Pcdh1, Pcdh9 or Cadherin 13 (Cdh13) in excitatory neurons. Using aggregation assays, we demonstrate a code-specific adhesion function of PCDH19; mosaic PCDH19 absence in PCDH19+9 and PCDH19 + CDH13, but not in PCDH19+1 codes, alters cell-cell interaction. Interestingly, we found that PCDH19 as a dominant protein in two heterophilic adhesion codes could promote trans-interaction between them. In addition, we discovered increased CDH13-mediated cell adhesion in the presence of PCDH19, suggesting a potential role of PCDH19 as an adhesion mediator of CDH13. Finally, we demonstrated novel cis-interactions between PCDH19 and PCDH1, PCDH9 and CDH13. These observations suggest that there is a unique combinatorial code with a cell- and region-specific characteristic where a single molecule defines the heterophilic cell-cell adhesion properties of each code.
Assuntos
Encéfalo , Adesão Celular , Protocaderinas , Animais , Camundongos , Encéfalo/citologia , Encéfalo/crescimento & desenvolvimento , Epilepsia/metabolismo , Neurônios/metabolismoRESUMO
CRISPR-Cas9 technology has facilitated development of strategies that can potentially provide more humane and effective methods to control invasive vertebrate species, such as mice. One promising strategy is X chromosome shredding which aims to bias offspring towards males, resulting in a gradual and unsustainable decline of females. This method has been explored in insects with encouraging results. Here, we investigated this strategy in Mus musculus by targeting repeat DNA sequences on the X chromosome with the aim of inducing sufficient DNA damage to specifically eliminate X chromosome-bearing sperm during gametogenesis. We tested three different guide RNAs (gRNAs) targeting different repeats on the X chromosome, together with three male germline-specific promoters for inducing Cas9 expression at different stages of spermatogenesis. A modest bias towards mature Y-bearing sperm was detected in some transgenic males, although this did not translate into significant male-biasing of offspring. Instead, cleavage of the X chromosome during meiosis typically resulted in a spermatogenic block, manifest as small testes volume, empty tubules, low sperm concentration, and sub/infertility. Our study highlights the importance of controlling the timing of CRISPR-Cas9 activity during mammalian spermatogenesis and the sensitivity of spermatocytes to X chromosome disruption.
Assuntos
Sistemas CRISPR-Cas , Espermatogênese , Cromossomo X , Animais , Masculino , Camundongos , Espermatogênese/genética , Cromossomo X/genética , Feminino , RNA Guia de Sistemas CRISPR-Cas/genética , Espermatozoides/metabolismo , Camundongos Transgênicos , Meiose/genéticaRESUMO
We implicated the X-chromosome THOC2 gene, which encodes the largest subunit of the highly-conserved TREX (Transcription-Export) complex, in a clinically complex neurodevelopmental disorder with intellectual disability as the core phenotype. To study the molecular pathology of this essential eukaryotic gene, we generated a mouse model based on a hypomorphic Thoc2 exon 37-38 deletion variant of a patient with ID, speech delay, hypotonia, and microcephaly. The Thoc2 exon 37-38 deletion male (Thoc2Δ/Y) mice recapitulate the core phenotypes of THOC2 syndrome including smaller size and weight, and significant deficits in spatial learning, working memory and sensorimotor functions. The Thoc2Δ/Y mouse brain development is significantly impacted by compromised THOC2/TREX function resulting in R-loop accumulation, DNA damage and consequent cell death. Overall, we suggest that perturbed R-loop homeostasis, in stem cells and/or differentiated cells in mice and the patient, and DNA damage-associated functional alterations are at the root of THOC2 syndrome.
Assuntos
Deficiência Intelectual , Fatores de Transcrição , Humanos , Masculino , Camundongos , Animais , Fatores de Transcrição/metabolismo , Estruturas R-Loop , Transporte Ativo do Núcleo Celular , Deficiência Intelectual/genética , Dano ao DNA , Fenótipo , RNA Mensageiro/metabolismoRESUMO
The pituitary develops from the interaction of the infundibulum, a region of the ventral diencephalon, and Rathke's pouch, a derivative of oral ectoderm. Postnatally, its secretory functions are controlled by hypothalamic neurons, which also derive from the ventral diencephalon. In humans, mutations affecting the X-linked transcription factor SOX3 are associated with hypopituitarism and mental retardation, but nothing is known of their etiology. We find that deletion of Sox3 in mice leads to defects of pituitary function and of specific central nervous system (CNS) midline structures. Cells in the ventral diencephalon, where Sox3 is usually highly expressed, have altered properties in mutant embryos, leading to abnormal development of Rathke's pouch, which does not express the gene. Pituitary and hypothalamic defects persist postnatally, and SOX3 may also function in a subset of hypothalamic neurons. This study shows how sensitive the pituitary is to subtle developmental defects and how one gene can act at several levels in the hypothalamic-pituitary axis.