Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 135(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35748225

RESUMO

Commonly applied super-resolution light microscopies have provided insight into subcellular processes at the nanoscale. However, imaging depth, speed, throughput and cost remain significant challenges, limiting the numbers of three-dimensional (3D) nanoscale processes that can be investigated and the number of laboratories able to undertake such analysis. Expansion microscopy (ExM) solves many of these limitations, but its application to imaging nuclear processes has been constrained by concerns of unequal nuclear expansion. Here, we demonstrate the conditions for isotropic expansion of the nucleus at a resolution equal to or better than 120-130 nm (pre-expansion). Using the DNA damage response proteins BRCA1, 53BP1 (also known as TP53BP1) and RAD51 as exemplars, we quantitatively describe the 3D nanoscale organisation of over 50,000 DNA damage response structures. We demonstrate the ability to assess chromatin-regulated events and show the simultaneous assessment of four elements. This study thus demonstrates how ExM can contribute to the investigation of nanoscale nuclear processes.


Assuntos
Cromatina , Microscopia , Núcleo Celular , Microscopia/métodos
2.
Haematologica ; 107(1): 243-259, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33327716

RESUMO

In specialised cells, the expression of specific tubulin isoforms and their subsequent post-translational modifications drive and coordinate unique morphologies and behaviours. The mechanisms by which ß1-tubulin, the platelet and megakaryocyte (MK) lineage restricted tubulin isoform, drives platelet production and function remains poorly understood. We investigated the roles of two key post-translational tubulin polymodifications (polyglutamylation and polyglycylation) on these processes using a cohort of thrombocytopenic patients, human induced pluripotent stem cell (iPSC) derived MKs, and healthy human donor platelets. We find distinct patterns of polymodification in MKs and platelets, mediated by the antagonistic activities of the cell specific expression of Tubulin Tyrosine Ligase Like (TTLLs) and Cytosolic Carboxypeptidase (CCP) enzymes. The resulting microtubule patterning spatially regulates motor proteins to drive proplatelet formation in megakaryocytes, and the cytoskeletal reorganisation required for thrombus formation. This work is the first to show a reversible system of polymodification by which different cell specific functions are achieved.


Assuntos
Células-Tronco Pluripotentes Induzidas , Tubulina (Proteína) , Plaquetas/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Megacariócitos/metabolismo , Processamento de Proteína Pós-Traducional , Trombopoese , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
3.
Bioinformatics ; 36(5): 1614-1621, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31626286

RESUMO

MOTIVATION: Localization microscopy data is represented by a set of spatial coordinates, each corresponding to a single detection, that form a point cloud. This can be analyzed either by rendering an image from these coordinates, or by analyzing the point cloud directly. Analysis of this type has focused on clustering detections into distinct groups which produces measurements such as cluster area, but has limited capacity to quantify complex molecular organization and nano-structure. RESULTS: We present a segmentation protocol which, through the application of persistence-based clustering, is capable of probing densely packed structures which vary in scale. An increase in segmentation performance over state-of-the-art methods is demonstrated. Moreover we employ persistent homology to move beyond clustering, and quantify the topological structure within data. This provides new information about the preserved shapes formed by molecular architecture. Our methods are flexible and we demonstrate this by applying them to receptor clustering in platelets, nuclear pore components, endocytic proteins and microtubule networks. Both 2D and 3D implementations are provided within RSMLM, an R package for pointillist-based analysis and batch processing of localization microscopy data. AVAILABILITY AND IMPLEMENTATION: RSMLM has been released under the GNU General Public License v3.0 and is available at https://github.com/JeremyPike/RSMLM. Tutorials for this library implemented as Binder ready Jupyter notebooks are available at https://github.com/JeremyPike/RSMLM-tutorials. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Análise de Dados , Software , Análise por Conglomerados , Microscopia , Imagem Individual de Molécula
4.
Platelets ; 32(1): 54-58, 2021 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-32321340

RESUMO

The assessment of platelet spreading through light microscopy, and the subsequent quantification of parameters such as surface area and circularity, is a key assay for many platelet biologists. Here we present an analysis workflow which robustly segments individual platelets to facilitate the analysis of large numbers of cells while minimizing user bias. Image segmentation is performed by interactive learning and touching platelets are separated with an efficient semi-automated protocol. We also use machine learning methods to robustly automate the classification of platelets into different subtypes. These adaptable and reproducible workflows are made freely available and are implemented using the open-source software KNIME and ilastik.


Assuntos
Plaquetas/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Humanos , Fluxo de Trabalho
5.
Platelets ; 32(8): 1051-1062, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32981398

RESUMO

An organized and dynamic cytoskeleton is required for platelet formation and function. Formins are a large family of actin regulatory proteins which are also able to regulate microtubule dynamics. There are four formin family members expressed in human and mouse megakaryocytes and platelets. We have previously shown that the actin polymerization activity of formin proteins is required for cytoskeletal dynamics and platelet spreading using a small molecule inhibitor. In the current study, we analyze transgenic mouse models deficient in two of these proteins, mDia1 and Fhod1, along with a model lacking both proteins. We demonstrate that double knockout mice display macrothrombocytopenia which is due to aberrant megakaryocyte function and a small decrease in platelet lifespan. Platelet function is unaffected by the loss of these proteins. This data indicates a critical role for formins in platelet and megakaryocyte function.


Assuntos
Plaquetas/metabolismo , Proteínas Fetais/metabolismo , Forminas/metabolismo , Microtúbulos/metabolismo , Testes de Função Plaquetária/métodos , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout
6.
Platelets ; 30(1): 23-30, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29913076

RESUMO

The platelet and megakaryocyte cytoskeletons are essential for formation and function of these cells. A dynamic, properly organised tubulin and actin cytoskeleton is critical for the development of the megakaryocyte and the extension of proplatelets. Tubulin in particular plays a pivotal role in the extension of these proplatelets and the release of platelets from them. Tubulin is further required for the maintenance of platelet size, and actin is the driving force for shape change, spreading and platelet contraction during platelet activation. Whilst several key proteins which regulate these cytoskeletons have been described in detail, the formin family of proteins has received less attention. Formins are intriguing as, although they were initially believed to simply be a nucleator of actin polymerisation, increasing evidence shows they are important regulators of the crosstalk between the actin and microtubule cytoskeletons. In this review, we will introduce the formin proteins and consider the recent evidence that they play an important role in platelets and megakaryocytes in mediating both the actin and tubulin cytoskeletons.


Assuntos
Plaquetas/metabolismo , Megacariócitos/metabolismo , Proteínas dos Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Forminas , Expressão Gênica , Humanos , Proteínas dos Microfilamentos/genética , Microtúbulos/metabolismo
7.
Arterioscler Thromb Vasc Biol ; 37(5): 823-835, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28336561

RESUMO

OBJECTIVE: Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor that belongs to the inhibitory immunoreceptor tyrosine-based inhibition motif-containing receptor family. It is an inhibitor of signaling via the immunoreceptor tyrosine-based activation motif-containing collagen receptor complex, glycoprotein VI-FcRγ-chain. It is expressed on hematopoietic cells, including immature megakaryocytes, but is not detectable on platelets. Although the inhibitory function of LAIR-1 has been described in leukocytes, its physiological role in megakaryocytes and in particular in platelet formation has not been explored. In this study, we investigate the role of LAIR-1 in megakaryocyte development and platelet production by generating LAIR-1-deficient mice. APPROACH AND RESULTS: Mice lacking LAIR-1 exhibit a significant increase in platelet counts, a prolonged platelet half-life in vivo, and increased proplatelet formation in vitro. Interestingly, platelets from LAIR-1-deficient mice exhibit an enhanced reactivity to collagen and the glycoprotein VI-specific agonist collagen-related peptide despite not expressing LAIR-1, and mice showed enhanced thrombus formation in the carotid artery after ferric chloride injury. Targeted deletion of LAIR-1 in mice results in an increase in signaling downstream of the glycoprotein VI-FcRγ-chain and integrin αIIbß3 in megakaryocytes because of enhanced Src family kinase activity. CONCLUSIONS: Findings from this study demonstrate that ablation of LAIR-1 in megakaryocytes leads to increased Src family kinase activity and downstream signaling in response to collagen that is transmitted to platelets, rendering them hyper-reactive specifically to agonists that signal through Syk tyrosine kinases, but not to G-protein-coupled receptors.


Assuntos
Plaquetas/metabolismo , Megacariócitos/metabolismo , Ativação Plaquetária , Receptores Imunológicos/deficiência , Trombocitose/sangue , Trombose/sangue , Animais , Plaquetas/efeitos dos fármacos , Proteínas de Transporte/farmacologia , Células Cultivadas , Cloretos , Modelos Animais de Doenças , Ativação Enzimática , Compostos Férricos , Predisposição Genética para Doença , Megacariócitos/efeitos dos fármacos , Camundongos Knockout , Peptídeos/farmacologia , Fenótipo , Ativação Plaquetária/efeitos dos fármacos , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Glicoproteínas da Membrana de Plaquetas/agonistas , Glicoproteínas da Membrana de Plaquetas/metabolismo , Receptores de IgG/sangue , Receptores Imunológicos/genética , Transdução de Sinais/efeitos dos fármacos , Trombocitose/genética , Trombose/induzido quimicamente , Trombose/genética , Quinases da Família src/sangue
8.
Blood ; 126(2): 133-43, 2015 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-25947942

RESUMO

Arthrogryposis, renal dysfunction, and cholestasis (ARC) syndrome is caused by deficiencies in the trafficking proteins VPS33B or VIPAR, and is associated with a bleeding diathesis and a marked reduction in platelet α-granules. We generated a tamoxifen-inducible mouse model of VPS33B deficiency, Vps33b(fl/fl)-ER(T2), and studied the platelet phenotype and α-granule biogenesis. Ultrastructural analysis of Vps33b(fl/fl)-ER(T2) platelets identified a marked reduction in α-granule count and the presence of small granule-like structures in agreement with the platelet phenotype observed in ARC patients. A reduction of ∼65% to 75% was observed in the α-granule proteins von Willebrand factor and P-selectin. Although platelet aggregation responses were not affected, a defect in δ-granule secretion was observed. Under arteriolar shear conditions, Vps33b(fl/fl)-ER(T2) platelets were unable to form stable aggregates, and tail-bleeding measurement revealed a bleeding diathesis. Analysis of bone marrow-derived megakaryocytes (MKs) by conventional and immuno-electron microscopy from Vps33b(fl/fl)-ER(T2) mice revealed a reduction in mature type-II multivesicular bodies (MVB II) and an accumulation of large vacuoles. Proteins that are normally stored in α-granules were underrepresented in MVB II and proplatelet extensions. These results demonstrate that abnormal protein trafficking and impairment in MVB maturation in MKs underlie the α-granule deficiency in Vps33b(fl/fl)-ER(T2) mouse and ARC patients.


Assuntos
Grânulos Citoplasmáticos/metabolismo , Megacariócitos/metabolismo , Proteínas de Transporte Vesicular/fisiologia , Animais , Artrogripose/genética , Células Cultivadas , Colestase/genética , Síndrome da Plaqueta Cinza/genética , Síndrome da Plaqueta Cinza/metabolismo , Humanos , Megacariócitos/citologia , Megacariócitos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Organelas/metabolismo , Contagem de Plaquetas , Polimorfismo de Nucleotídeo Único , Transporte Proteico/genética , Insuficiência Renal/genética , Proteínas de Transporte Vesicular/genética
9.
Platelets ; 28(4): 372-379, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27778524

RESUMO

A dynamic, properly organised actin cytoskeleton is critical for the production and haemostatic function of platelets. The Wiskott Aldrich Syndrome protein (WASp) and Actin-Related Proteins 2 & 3 Complex (Arp2/3 complex) are critical mediators of actin polymerisation and organisation in many cell types. In platelets and megakaryocytes, these proteins have been shown to be important for proper platelet production and function. The cortactin family of proteins (Cttn & HS1) are known to regulate WASp-Arp2/3-mediated actin polymerisation in other cell types and so here we address the role of these proteins in platelets using knockout mouse models. We generated mice lacking Cttn and HS1 in the megakaryocyte/platelet lineage. These mice had normal platelet production, with platelet number, size and surface receptor profile comparable to controls. Platelet function was also unaffected by loss of Cttn/HS1 with no differences observed in a range of platelet function assays including aggregation, secretion, spreading, clot retraction or tyrosine phosphorylation. No effect on tail bleeding time or in thrombosis models was observed. In addition, platelet actin nodules, and megakaryocyte podosomes, actin-based structures known to be dependent on WASp and the Arp2/3 complex, formed normally. We conclude that despite the importance of WASp and the Arp2/3 complex in regulating F-actin dynamics in many cells types, the role of cortactin in their regulation appears to be fulfilled by other proteins in platelets.


Assuntos
Actinas/metabolismo , Plaquetas/metabolismo , Cortactina/metabolismo , Fator Estimulador de Colônias de Granulócitos/metabolismo , Megacariócitos/metabolismo , Podossomos/metabolismo , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica
10.
J Biol Chem ; 289(52): 35695-710, 2014 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-25368330

RESUMO

The interaction of C-type lectin receptor 2 (CLEC-2) on platelets with Podoplanin on lymphatic endothelial cells initiates platelet signaling events that are necessary for prevention of blood-lymph mixing during development. In the present study, we show that CLEC-2 signaling via Src family and Syk tyrosine kinases promotes platelet adhesion to primary mouse lymphatic endothelial cells at low shear. Using supported lipid bilayers containing mobile Podoplanin, we further show that activation of Src and Syk in platelets promotes clustering of CLEC-2 and Podoplanin. Clusters of CLEC-2-bound Podoplanin migrate rapidly to the center of the platelet to form a single structure. Fluorescence lifetime imaging demonstrates that molecules within these clusters are within 10 nm of one another and that the clusters are disrupted by inhibition of Src and Syk family kinases. CLEC-2 clusters are also seen in platelets adhered to immobilized Podoplanin using direct stochastic optical reconstruction microscopy. These findings provide mechanistic insight by which CLEC-2 signaling promotes adhesion to Podoplanin and regulation of Podoplanin signaling, thereby contributing to lymphatic vasculature development.


Assuntos
Células Endoteliais/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Tirosina Quinases/fisiologia , Quinases da Família src/fisiologia , Animais , Adesão Celular , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Tecido Linfoide/citologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Adesividade Plaquetária , Transporte Proteico , Transdução de Sinais , Quinase Syk
11.
Blood ; 121(13): 2542-52, 2013 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-23305739

RESUMO

Megakaryocytes give rise to platelets via extension of proplatelet arms, which are released through the vascular sinusoids into the bloodstream. Megakaryocytes and their precursors undergo varying interactions with the extracellular environment in the bone marrow during their maturation and positioning in the vascular niche. We demonstrate that podosomes are abundant in primary murine megakaryocytes adherent on multiple extracellular matrix substrates, including native basement membrane. Megakaryocyte podosome lifetime and density, but not podosome size, are dependent on the type of matrix, with podosome lifetime dramatically increased on collagen fibers compared with fibrinogen. Podosome stability and dynamics depend on actin cytoskeletal dynamics but not matrix metalloproteases. However, podosomes degrade matrix and appear to be important for megakaryocytes to extend protrusions across a native basement membrane. We thus demonstrate for the first time a fundamental requirement for podosomes in megakaryocyte process extension across a basement membrane, and our results suggest that podosomes may have a role in proplatelet arm extension or penetration of basement membrane.


Assuntos
Membrana Basal/fisiologia , Extensões da Superfície Celular/fisiologia , Matriz Extracelular/metabolismo , Megacariócitos/fisiologia , Animais , Membrana Basal/metabolismo , Plaquetas/metabolismo , Plaquetas/fisiologia , Extensões da Superfície Celular/metabolismo , Células Cultivadas , Fibrinogênio/metabolismo , Células HEK293 , Humanos , Recém-Nascido , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miosina Tipo II/metabolismo
14.
Proc Natl Acad Sci U S A ; 109(6): 1862-7, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22308346

RESUMO

Water soluble, luminescent gold nanoparticles are delivered into human platelets via a rapid, pH-controlled mechanism using a pH low insertion peptide, pHLIP. The approach introduces cocoating of gold nanoparticles with a europium luminescent complex, EuL and the pHLIP peptide to give pHLIP•EuL•Au. The 13-nm diameter gold nanoparticles act as a scaffold for the attachment of both the luminescent probe and the peptide to target delivery. Their size allows delivery of approximately 640 lanthanide probes per nanoparticle to be internalized in human platelets, which are not susceptible to transfection or microinjection. The internalization of pHLIP•EuL•Au in platelets, which takes just minutes, was studied with a variety of imaging modalities including luminescence, confocal reflection, and transmission electron microscopy. The results show that pHLIP•EuL•Au only enters the platelets in low pH conditions, pH 6.5, mediated by the pHLIP translocation across the membrane, and not at pH 7.4. Luminescence microscopy images of the treated platelets show clearly the red luminescence signal from the europium probe and confocal reflection microscopy confirms the presence of the gold particles. Furthermore, transmission electron microscopy gives a detailed insight of the internalization and spatial localization of the gold nanoparticles in the platelets. Thus, we demonstrate the potential of the design to translocate multimodal nanoparticle probes into cells in a pH dependent manner.


Assuntos
Plaquetas/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Európio/metabolismo , Luminescência , Nanopartículas/química , Humanos , Concentração de Íons de Hidrogênio , Imageamento Tridimensional , Proteínas de Membrana/metabolismo , Microscopia Confocal , Nanopartículas/ultraestrutura , Espectrofotometria Ultravioleta
15.
J Thromb Haemost ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38492852

RESUMO

BACKGROUND: Scott syndrome is a mild platelet-type bleeding disorder, first described in 1979, with only 3 unrelated families identified through defective phosphatidylserine (PS) exposure and confirmed by sequencing. The syndrome is distinguished by impaired surface exposure of procoagulant PS on platelets after stimulation. To date, platelet function and thrombin generation in this condition have not been extensively characterized. OBJECTIVES: Genetic and functional studies were undertaken in a consanguineous family with a history of excessive bleeding of unknown cause. METHODS: A targeted gene panel of known bleeding and platelet genes was used to identify possible genetic variants. Platelet phenotyping, flow adhesion, flow cytometry, whole blood and platelet-rich plasma thrombin generation, and specialized extracellular vesicle measurements were performed. RESULTS: We detected a novel homozygous frameshift variant, c.1943del (p.Arg648Hisfs∗23), in ANO6 encoding Anoctamin 6, in a patient with a bleeding history but interestingly with normal ANO6 expression. Phenotyping of the patient's platelets confirmed the absence of PS expression and procoagulant activity but also revealed other defects including reduced platelet δ granules, reduced ristocetin-mediated aggregation and secretion, and reduced P-selectin expression after stimulation. PS was absent on spread platelets, and thrombi formed over collagen at 1500/s. Reduced thrombin generation was observed in platelet-rich plasma and confirmed in whole blood using a new thrombin generation assay. CONCLUSION: We present a comprehensive report of a patient with Scott syndrome with a novel frameshift variant in AN06, which is associated with no platelet PS exposure and markedly reduced thrombin generation in whole blood, explaining the significant bleeding phenotype observed.

16.
Sci Rep ; 12(1): 2715, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-35177729

RESUMO

Cortical actin plays a key role in cell movement and division, but has also been implicated in the organisation of cell surface receptors such as G protein-coupled receptors. The actin mesh proximal to the inner membrane forms small fenced regions, or 'corrals', in which receptors can be constrained. Quantification of the actin mesh at the nanoscale has largely been attempted in single molecule datasets and electron micrographs. This work describes the development and validation of workflows for analysis of super resolved fixed cortical actin images obtained by Super Resolved Radial Fluctuations (SRRF), Structured Illumination Microscopy (3D-SIM) and Expansion Microscopy (ExM). SRRF analysis was used to show a significant increase in corral area when treating cells with the actin disrupting agent cytochalasin D (increase of 0.31 µm2 ± 0.04 SEM), and ExM analysis allowed for the quantitation of actin filament densities. Thus, this work allows complex actin networks to be quantified from super-resolved images and is amenable to both fixed and live cell imaging.


Assuntos
Actinas/análise , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Células A549 , Citoesqueleto de Actina/química , Citoesqueleto de Actina/metabolismo , Actinas/química , Actinas/efeitos dos fármacos , Membrana Celular/química , Membrana Celular/metabolismo , Citocalasina D/farmacologia , Humanos
17.
Blood Adv ; 6(9): 2932-2946, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35042240

RESUMO

Circulating large "preplatelets" undergo fission via barbell platelet intermediates into two smaller, mature platelets. In this study, we determine whether preplatelets and/or barbells are equivalent to reticulated/immature platelets by using ImageStream flow cytometry and super-resolution microscopy. Immature platelets, preplatelets, and barbells were quantified in healthy and thrombocytopenic mice, healthy human volunteers, and patients with immune thrombocytopenia or undergoing chemotherapy. Preplatelets and barbells were 1.9% ± 0.18%/1.7% ± 0.48% (n = 6) and 3.3% ± 1.6%/0.5% ± 0.27% (n = 12) of total platelet counts in murine and human whole blood, respectively. Both preplatelets and barbells exhibited high expression of major histocompatibility complex class I with high thiazole orange and Mitotracker fluorescence. Tracking dye experiments confirmed that preplatelets transform into barbells and undergo fission ex vivo to increase platelet counts, with dependence on the cytoskeleton and normal mitochondrial respiration. Samples from antibody-induced thrombocytopenia in mice and patients with immune thrombocytopenia had increased levels of both preplatelets and barbells correlating with immature platelet levels. Furthermore, barbells were absent after chemotherapy in patients. In mice, in vivo biotinylation confirmed that barbells, but not all large platelets, were immature. This study demonstrates that a subpopulation of large platelets are immature preplatelets that can transform into barbells and undergo fission during maturation.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Animais , Plaquetas , Citometria de Fluxo/métodos , Humanos , Camundongos , Contagem de Plaquetas
18.
J Cell Biol ; 174(2): 221-9, 2006 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-16831890

RESUMO

Self-incompatibility (SI) prevents inbreeding through specific recognition and rejection of incompatible pollen. In incompatible Papaver rhoeas pollen, SI triggers a Ca2+ signaling cascade, resulting in the inhibition of tip growth, actin depolymerization, and programmed cell death (PCD). We investigated whether actin dynamics were implicated in regulating PCD. Using the actin-stabilizing and depolymerizing drugs jasplakinolide (Jasp) and latrunculin B, we demonstrate that changes in actin filament levels or dynamics play a functional role in initiating PCD in P. rhoeas pollen, triggering a caspase-3-like activity. Significantly, SI-induced PCD in incompatible pollen was alleviated by pretreatment with Jasp. This represents the first account of a specific causal link between actin polymerization status and initiation of PCD in a plant cell and significantly advances our understanding of the mechanisms involved in SI.


Assuntos
Actinas/metabolismo , Apoptose , Papaver/citologia , Pólen/citologia , Pólen/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Actinas/química , Apoptose/efeitos dos fármacos , Biopolímeros/química , Biopolímeros/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Caspase 3 , Caspases/metabolismo , Depsipeptídeos/farmacologia , Papaver/efeitos dos fármacos , Papaver/metabolismo , Pólen/efeitos dos fármacos , Pólen/crescimento & desenvolvimento , Tiazóis/farmacologia , Tiazolidinas
19.
Front Cell Dev Biol ; 9: 676066, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490240

RESUMO

Immune cells comprise a diverse set of cells that undergo a complex array of biological processes that must be tightly regulated. A key component of cellular machinery that achieves this is the cytoskeleton. Therefore, imaging and quantitatively describing the architecture and dynamics of the cytoskeleton is an important research goal. Optical microscopy is well suited to this task. Here, we review the latest in the state-of-the-art methodology for labeling the cytoskeleton, fluorescence microscopy hardware suitable for such imaging and quantitative statistical analysis software applicable to describing cytoskeletal structures. We also highlight ongoing challenges and areas for future development.

20.
Front Immunol ; 12: 693974, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163489

RESUMO

Platelets play a key role in the development, progression and resolution of the inflammatory response during sterile inflammation and infection, although the mechanism is not well understood. Here we show that platelet CLEC-2 reduces tissue inflammation by regulating inflammatory macrophage activation and trafficking from the inflamed tissues. The immune regulatory function of CLEC-2 depends on the expression of its ligand, podoplanin, upregulated on inflammatory macrophages and is independent of platelet activation and secretion. Mechanistically, platelet CLEC-2 and also recombinant CLEC-2-Fc accelerates actin rearrangement and macrophage migration by increasing the expression of podoplanin and CD44, and their interaction with the ERM proteins. During ongoing inflammation, induced by lipopolysaccharide, treatment with rCLEC-2-Fc induces the rapid emigration of peritoneal inflammatory macrophages to mesenteric lymph nodes, thus reducing the accumulation of inflammatory macrophages in the inflamed peritoneum. This is associated with a significant decrease in pro-inflammatory cytokine, TNF-α and an increase in levels of immunosuppressive, IL-10 in the peritoneum. Increased podoplanin expression and actin remodelling favour macrophage migration towards CCL21, a soluble ligand for podoplanin and chemoattractant secreted by lymph node lymphatic endothelial cells. Macrophage efflux to draining lymph nodes induces T cell priming. In conclusion, we show that platelet CLEC-2 reduces the inflammatory phenotype of macrophages and their accumulation, leading to diminished tissue inflammation. These immunomodulatory functions of CLEC-2 are a novel strategy to reduce tissue inflammation and could be therapeutically exploited through rCLEC-2-Fc, to limit the progression to chronic inflammation.


Assuntos
Plaquetas/metabolismo , Movimento Celular , Lectinas Tipo C/metabolismo , Ativação de Macrófagos , Macrófagos Peritoneais/metabolismo , Peritonite/metabolismo , Animais , Plaquetas/imunologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Mediadores da Inflamação/metabolismo , Lectinas Tipo C/genética , Lipopolissacarídeos , Macrófagos Peritoneais/imunologia , Masculino , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peritonite/genética , Peritonite/imunologia , Fagocitose , Fenótipo , Células RAW 264.7 , Transdução de Sinais , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA