Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(43): e2309989120, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37856545

RESUMO

Thalidomide has a dark history as a teratogen, but in recent years, its derivates have been shown to function as potent chemotherapeutic agents. These drugs bind cereblon (CRBN), the substrate receptor of an E3 ubiquitin ligase complex, and modify its degradation targets. Despite these insights, remarkably little is known about the normal function of cereblon in development. Here, we employ Ciona, a simple invertebrate chordate, to identify endogenous Crbn targets. In Ciona, Crbn is specifically expressed in developing muscles during tail elongation before they acquire contractile activity. Crbn expression is activated by Mrf, the ortholog of MYOD1, a transcription factor important for muscle differentiation. CRISPR/Cas9-mediated mutations of Crbn lead to precocious onset of muscle contractions. By contrast, overexpression of Crbn delays contractions and is associated with decreased expression of contractile protein genes such as troponin. This reduction is possibly due to reduced Mrf protein levels without altering Mrf mRNA levels. Our findings suggest that Mrf and Crbn form a negative feedback loop to control the precision of muscle differentiation during tail elongation.


Assuntos
Ciona intestinalis , Músculos , Peptídeo Hidrolases , Animais , Proteínas de Transporte , Ciona intestinalis/genética , Ciona intestinalis/metabolismo , Músculos/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Talidomida/efeitos adversos , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Larva/genética , Larva/metabolismo
2.
J Biol Chem ; 289(42): 28942-55, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25147182

RESUMO

Targeted degradation of proteins through the ubiquitin-proteasome system (UPS) via the activities of E3 ubiquitin ligases regulates diverse cellular processes, and misregulation of these enzymes contributes to the pathogenesis of human diseases. One of the challenges facing the UPS field is to delineate the complete cohort of substrates for a particular E3 ligase. Advances in mass spectrometry and the development of antibodies recognizing the Lys-ϵ-Gly-Gly (diGly) remnant from ubiquitinated proteins following trypsinolysis have provided a tool to address this question. We implemented an inducible loss of function approach in combination with quantitative diGly proteomics to find novel substrates of HUWE1 (HECT, UBA, and WWE domain containing 1, E3 ubiquitin protein ligase), an E3 ligase implicated in cancer and intellectual disabilities. diGly proteomics results led to the identification of DNA damage-inducible transcript 4 (DDIT4) as a putative HUWE1 substrate. Cell-based assays demonstrated that HUWE1 interacts with and regulates ubiquitination and stability of DDIT4. Together these data suggest a model in which HUWE1 mediates DDIT4 proteasomal degradation. Our results demonstrate proof of concept that inducible knockdown of an E3 ligase in combination with diGly proteomics provides a potentially advantageous method for identifying novel E3 substrates that may help to identify candidates for therapeutic modulation in the UPS.


Assuntos
Regulação Neoplásica da Expressão Gênica , Oligopeptídeos/química , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HEK293 , Células HeLa , Humanos , Lisina/química , Espectrometria de Massas , Neoplasias/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Proteômica , Interferência de RNA , Proteínas Supressoras de Tumor , Ubiquitina/química , Ubiquitina Tiolesterase/metabolismo , Peptidase 7 Específica de Ubiquitina
3.
J Biol Chem ; 287(28): 23710-7, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22648410

RESUMO

Iron regulatory proteins play a principal role in maintaining cellular iron homeostasis by post-transcriptionally regulating factors responsible for iron uptake, utilization, and storage. An E3 ubiquitin ligase complex containing FBXL5 targets IRP2 for proteasomal degradation under iron- and oxygen-replete conditions, whereas FBXL5 itself is degraded when iron and oxygen availability decreases. FBXL5 contains a hemerythrin-like (Hr) domain at its N terminus that mediates its own differential stability. Here, we investigated the iron- and oxygen-dependent conformational changes within FBXL5-Hr that underlie its role as a cellular sensor. As predicted, FBXL5-Hr undergoes substantive structural changes when iron becomes limiting, accounting for its switch-like behavior. However, these same changes are not observed in response to oxygen depletion, indicating that this domain accommodates two distinct sensing mechanisms. Moreover, FBXL5-Hr does not behave as a dynamic sensor that continuously samples the cellular environment, assuming conformations in equilibrium with ever-changing cellular iron levels. Instead, the isolated domain appears competent to incorporate iron only at or near the time of its own synthesis. These observations have important implications for mechanisms by which these metabolites are sensed within mammalian cells.


Assuntos
Proteínas F-Box/metabolismo , Ferro/metabolismo , Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células 3T3 , Animais , Sítios de Ligação , Dicroísmo Circular , Inibidores de Cisteína Proteinase/farmacologia , Proteínas F-Box/química , Proteínas F-Box/genética , Células HEK293 , Hemeritrina/metabolismo , Humanos , Immunoblotting , Ferro/farmacologia , Leupeptinas/farmacologia , Espectroscopia de Ressonância Magnética , Camundongos , Camundongos Endogâmicos BALB C , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma , Ligação Proteica , Conformação Proteica/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/genética
4.
J Biol Chem ; 287(10): 7357-65, 2012 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-22253436

RESUMO

Mammalian cells maintain iron homeostasis by sensing changes in bioavailable iron levels and promoting adaptive responses. FBXL5 is a subunit of an E3 ubiquitin ligase complex that mediates the stability of iron regulatory protein 2, an important posttranscriptional regulator of several genes involved in iron metabolism. The stability of FBXL5 is regulated in an iron- and oxygen-responsive manner, contingent upon the presence of its N-terminal domain. Here we present the atomic structure of the FBXL5 N terminus, a hemerythrin-like α-helical bundle fold not previously observed in mammalian proteins. The core of this domain employs an unusual assortment of amino acids necessary for the assembly and sensing properties of its diiron center. These regulatory features govern the accessibility of a mapped sequence required for proteasomal degradation of FBXL5. Detailed molecular and structural characterization of the ligand-responsive hemerythrin domain provides insights into the mechanisms by which FBXL5 serves as a unique mammalian metabolic sensor.


Assuntos
Proteínas F-Box/química , Ubiquitina-Proteína Ligases/química , Cristalografia por Raios X , Estabilidade Enzimática , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Humanos , Proteína 2 Reguladora do Ferro/química , Proteína 2 Reguladora do Ferro/genética , Proteína 2 Reguladora do Ferro/metabolismo , Complexo de Endopeptidases do Proteassoma/química , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Estrutura Terciária de Proteína , Proteólise , Relação Estrutura-Atividade , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
5.
Biochim Biophys Acta ; 1823(9): 1484-90, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22349011

RESUMO

Regulation of both systemic and cellular iron homeostasis requires the capacity to sense iron levels and appropriately modify the expression of iron metabolism genes. These responses are coordinated through the efforts of several key regulatory factors including F-box and Leucine-rich Repeat Protein 5 (FBXL5), Iron Regulatory Proteins (IRPs), Hypoxia Inducible Factor (HIF), and ferroportin. Notably, the stability of each of these proteins is regulated in response to iron. Recent discoveries have greatly advanced our understanding of the molecular mechanisms governing iron-sensing and protein degradation within these pathways. It has become clear that iron's privileged roles in both enzyme catalysis and protein structure contribute to its regulation of protein stability. Moreover, these multiple pathways intersect with one another in larger regulatory networks to maintain iron homeostasis. This article is part of a Special Issue entitled: Cell Biology of Metals.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Proteínas F-Box/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Proteínas Reguladoras de Ferro/metabolismo , Ferro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Proteínas de Transporte de Cátions/genética , Proteínas F-Box/genética , Hepcidinas , Homeostase/fisiologia , Humanos , Hipóxia/metabolismo , Fator 1 Induzível por Hipóxia/genética , Proteínas Reguladoras de Ferro/genética , Camundongos , Modelos Moleculares , Oxigênio/metabolismo , Estabilidade Proteica , Proteólise , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/genética
6.
Methods Mol Biol ; 2365: 283-300, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34432250

RESUMO

Targeted protein degradation is garnering increased attention as a therapeutic modality due in part to its promise of modulating targets previously considered undruggable. Cereblon E3 Ligase Modulating Drugs (CELMoDs) are one of the most well-characterized therapeutics employing this modality. CELMoDs hijack Cereblon E3 ligase activity causing neosubstrates to be ubiquitinated and degraded in the proteasome. Here, we describe a suite of assays-cellular substrate degradation, confirmation of CELMoD mechanism of action, in vitro ubiquitination, and Cereblon binding-that can be used to characterize CELMoD-mediated degradation of Cereblon neosubstrates. While the assays presented herein can be run independently, when combined they provide a strong platform to support the discovery and optimization of CELMoDs and fuel validation of targets degraded by this drug modality.


Assuntos
Nanoestruturas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
7.
ACS Chem Biol ; 15(12): 3149-3158, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33206504

RESUMO

There is a growing interest in using targeted protein degradation as a therapeutic modality in view of its potential to expand the druggable proteome. One avenue to using this modality is via molecular glue based Cereblon E3 Ligase Modulating Drug compounds. Here, we report the identification of the transcription factor ZBTB16 as a Cereblon neosubstrate. We also report two new Cereblon modulators, CC-3060 and CC-647, that promote ZBTB16 degradation. Unexpectedly, CC-3060 and CC-647 target ZBTB16 for degradation by primarily engaging distinct structural degrons on different zinc finger domains. The reciprocal fusion proteins, ZBTB16-RARα and RARα-ZBTB16, which cause a rare acute promyelocytic leukemia, contain these same structural degrons and can be targeted for proteasomal degradation with Cereblon modulator treatment. Thus, a targeted protein degradation approach via Cereblon modulators may represent a novel therapeutic strategy in acute promyelocytic leukemia where ZBTB16/RARA rearrangements are critical disease drivers.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , Proteína com Dedos de Zinco da Leucemia Promielocítica/efeitos dos fármacos , Ubiquitina-Proteína Ligases/metabolismo , Humanos , Leucemia Promielocítica Aguda/metabolismo , Proteólise , Receptor alfa de Ácido Retinoico/metabolismo , Especificidade por Substrato
8.
Science ; 326(5953): 722-6, 2009 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-19762597

RESUMO

Cellular iron homeostasis is maintained by the coordinate posttranscriptional regulation of genes responsible for iron uptake, release, use, and storage through the actions of the iron regulatory proteins IRP1 and IRP2. However, the manner in which iron levels are sensed to affect IRP2 activity is poorly understood. We found that an E3 ubiquitin ligase complex containing the FBXL5 protein targets IRP2 for proteasomal degradation. The stability of FBXL5 itself was regulated, accumulating under iron- and oxygen-replete conditions and degraded upon iron depletion. FBXL5 contains an iron- and oxygen-binding hemerythrin domain that acted as a ligand-dependent regulatory switch mediating FBXL5's differential stability. These observations suggest a mechanistic link between iron sensing via the FBXL5 hemerythrin domain, IRP2 regulation, and cellular responses to maintain mammalian iron homeostasis.


Assuntos
Proteínas F-Box/metabolismo , Hemeritrina/metabolismo , Ferro/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Domínio Catalítico , Linhagem Celular , Proteínas F-Box/química , Células HeLa , Homeostase , Humanos , Proteína 2 Reguladora do Ferro/metabolismo , Oxigênio/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Proteínas Recombinantes de Fusão/metabolismo , Complexos Ubiquitina-Proteína Ligase , Ubiquitina-Proteína Ligases/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA