Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 546(7656): 65-72, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569811

RESUMO

Biodiversity enhances many of nature's benefits to people, including the regulation of climate and the production of wood in forests, livestock forage in grasslands and fish in aquatic ecosystems. Yet people are now driving the sixth mass extinction event in Earth's history. Human dependence and influence on biodiversity have mainly been studied separately and at contrasting scales of space and time, but new multiscale knowledge is beginning to link these relationships. Biodiversity loss substantially diminishes several ecosystem services by altering ecosystem functioning and stability, especially at the large temporal and spatial scales that are most relevant for policy and conservation.


Assuntos
Biodiversidade , Atividades Humanas , Animais , Conservação dos Recursos Naturais , Política Ambiental , Extinção Biológica , Análise Espaço-Temporal , Especificidade da Espécie
2.
Proc Natl Acad Sci U S A ; 116(42): 21061-21067, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31570612

RESUMO

Dispersal and adaptation both allow species to persist in changing environments. Yet, we have limited understanding of how these processes interact to affect species persistence, especially in diverse communities where biotic interactions greatly complicate responses to environmental change. Here we use a stochastic metacommunity model to demonstrate how dispersal and adaptation to environmental change independently and interactively contribute to biodiversity maintenance. Dispersal provides spatial insurance, whereby species persist on the landscape by shifting their distributions to track favorable conditions. In contrast, adaptation allows species to persist by allowing for evolutionary rescue. But, when species both adapt and disperse, dispersal and adaptation do not combine positively to affect biodiversity maintenance, even if they do increase the persistence of individual species. This occurs because faster adapting species evolve to hold onto their initial ranges (i.e., monopolization effects), thus impeding slower adapting species from shifting their ranges and thereby causing extinctions. Importantly, these differences in adaptation speed emerge as the result of competition, which alters population sizes and colonization success. By demonstrating how dispersal and adaptation each independently and interactively contribute to the maintenance of biodiversity, we provide a framework that links the theories of spatial insurance, evolutionary rescue, and monopolization. This highlights the expectation that the maintenance of biodiversity in changing environments depends jointly on rates of dispersal and adaptation, and, critically, the interaction between these processes.


Assuntos
Adaptação Fisiológica/fisiologia , Biodiversidade , Evolução Biológica , Ecossistema , Modelos Biológicos
3.
Proc Biol Sci ; 288(1946): 20202779, 2021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33715425

RESUMO

The biodiversity and ecosystem functioning (BEF) relationship is expected to be scale-dependent. The autocorrelation of environmental heterogeneity is hypothesized to explain this scale dependence because it influences how quickly biodiversity accumulates over space or time. However, this link has yet to be demonstrated in a formal model. Here, we use a Lotka-Volterra competition model to simulate community dynamics when environmental conditions vary across either space or time. Species differ in their optimal environmental conditions, which results in turnover in community composition. We vary biodiversity by modelling communities with different sized regional species pools and ask how the amount of biomass per unit area depends on the number of species present, and the spatial or temporal scale at which it is measured. We find that more biodiversity is required to maintain functioning at larger temporal and spatial scales. The number of species required increases quickly when environmental autocorrelation is low, and slowly when autocorrelation is high. Both spatial and temporal environmental heterogeneity lead to scale dependence in BEF, but autocorrelation has larger impacts when environmental change is temporal. These findings show how the biodiversity required to maintain functioning is expected to increase over space and time.


Assuntos
Biodiversidade , Ecossistema , Biomassa
4.
Ecol Lett ; 23(9): 1314-1329, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32672410

RESUMO

The metacommunity concept has the potential to integrate local and regional dynamics within a general community ecology framework. To this end, the concept must move beyond the discrete archetypes that have largely defined it (e.g. neutral vs. species sorting) and better incorporate local scale species interactions and coexistence mechanisms. Here, we present a fundamental reconception of the framework that explicitly links local coexistence theory to the spatial processes inherent to metacommunity theory, allowing for a continuous range of competitive community dynamics. These dynamics emerge from the three underlying processes that shape ecological communities: (1) density-independent responses to abiotic conditions, (2) density-dependent biotic interactions and (3) dispersal. Stochasticity is incorporated in the demographic realisation of each of these processes. We formalise this framework using a simulation model that explores a wide range of competitive metacommunity dynamics by varying the strength of the underlying processes. Using this model and framework, we show how existing theories, including the traditional metacommunity archetypes, are linked by this common set of processes. We then use the model to generate new hypotheses about how the three processes combine to interactively shape diversity, functioning and stability within metacommunities.


Assuntos
Ecossistema , Modelos Biológicos , Biota , Ecologia , Dinâmica Populacional
5.
Ecol Lett ; 23(4): 757-776, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31997566

RESUMO

A rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale-dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population  synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross-scale feedbacks. Tests of this theory may combine remote sensing with a generation of networked experiments that assess effects at multiple scales. We also show how anthropogenic land cover change may alter the scaling of the BEF relationship. New research on the role of scale in BEF will guide policy linking the goals of managing biodiversity and ecosystems.


Assuntos
Biodiversidade , Ecossistema , Ecologia , Cadeia Alimentar
6.
Ecol Lett ; 22(1): 19-33, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30370702

RESUMO

Metacommunity theory provides an understanding of how spatial processes determine the structure and function of communities at local and regional scales. Although metacommunity theory has considered trophic dynamics in the past, it has been performed idiosyncratically with a wide selection of possible dynamics. Trophic metacommunity theory needs a synthesis of a few influential axis to simplify future predictions and tests. We propose an extension of metacommunity ecology that addresses these shortcomings by incorporating variability among trophic levels in 'spatial use properties'. We define 'spatial use properties' as a set of traits (dispersal, migration, foraging and spatial information processing) that set the spatial and temporal scales of organismal movement, and thus scales of interspecific interactions. Progress towards a synthetic predictive framework can be made by (1) documenting patterns of spatial use properties in natural food webs and (2) using theory and experiments to test how trophic structure in spatial use properties affects metacommunity dynamics.


Assuntos
Ecossistema , Modelos Biológicos , Ecologia , Cadeia Alimentar , Dinâmica Populacional
7.
Proc Biol Sci ; 285(1886)2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30209223

RESUMO

As thermal regimes change worldwide, projections of future population and species persistence often require estimates of how population growth rates depend on temperature. These projections rarely account for how temporal variation in temperature can systematically modify growth rates relative to projections based on constant temperatures. Here, we tested the hypothesis that time-averaged population growth rates in fluctuating thermal environments differ from growth rates in constant conditions as a consequence of Jensen's inequality, and that the thermal performance curves (TPCs) describing population growth in fluctuating environments can be predicted quantitatively based on TPCs generated in constant laboratory conditions. With experimental populations of the green alga Tetraselmis tetrahele, we show that nonlinear averaging techniques accurately predicted increased as well as decreased population growth rates in fluctuating thermal regimes relative to constant thermal regimes. We extrapolate from these results to project critical temperatures for population growth and persistence of 89 phytoplankton species in naturally variable thermal environments. These results advance our ability to predict population dynamics in the context of global change.


Assuntos
Clorófitas/fisiologia , Mudança Climática , Meio Ambiente , Temperatura , Modelos Biológicos , Crescimento Demográfico
8.
Proc Biol Sci ; 285(1880)2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29875295

RESUMO

Our understanding of the relationship between biodiversity and ecosystem functioning (BEF) applies mainly to fine spatial scales. New research is required if we are to extend this knowledge to broader spatial scales that are relevant for conservation decisions. Here, we use simulations to examine conditions that generate scale dependence of the BEF relationship. We study scale by assessing how the BEF relationship (slope and R2) changes when habitat patches are spatially aggregated. We find three ways for the BEF relationship to be scale-dependent: (i) variation among local patches in local (α) diversity, (ii) spatial variation in the local BEF relationship and (iii) incomplete compositional turnover in species composition among patches. The first two cause the slope of the BEF relationship to increase moderately with spatial scale, reflecting nonlinear averaging of spatial variation in diversity or the BEF relationship. The third mechanism results in much stronger scale dependence, with the BEF relationship increasing in the rising portion of the species area relationship, but then decreasing as it saturates. An analysis of data from the Cedar Creek grassland BEF experiment revealed a positive but saturating slope of the relationship with scale. Overall, our findings suggest that the BEF relationship is likely to be scale dependent.


Assuntos
Biodiversidade , Ecossistema , Pradaria , Minnesota , Modelos Biológicos
9.
Glob Chang Biol ; 24(1): 517-525, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28752533

RESUMO

Ecological stressors (i.e., environmental factors outside their normal range of variation) can mediate each other through their interactions, leading to unexpected combined effects on communities. Determining whether the net effect of stressors is ecologically surprising requires comparing their cumulative impact to a null model that represents the linear combination of their individual effects (i.e., an additive expectation). However, we show that standard additive and multiplicative null models that base their predictions on the effects of single stressors on community properties (e.g., species richness or biomass) do not provide this linear expectation, leading to incorrect interpretations of antagonistic and synergistic responses by communities. We present an alternative, the compositional null model, which instead bases its predictions on the effects of stressors on individual species, and then aggregates them to the community level. Simulations demonstrate the improved ability of the compositional null model to accurately provide a linear expectation of the net effect of stressors. We simulate the response of communities to paired stressors that affect species in a purely additive fashion and compare the relative abilities of the compositional null model and two standard community property null models (additive and multiplicative) to predict these linear changes in species richness and community biomass across different combinations (both positive, negative, or opposite) and intensities of stressors. The compositional model predicts the linear effects of multiple stressors under almost all scenarios, allowing for proper classification of net effects, whereas the standard null models do not. Our findings suggest that current estimates of the prevalence of ecological surprises on communities based on community property null models are unreliable, and should be improved by integrating the responses of individual species to the community level as does our compositional null model.


Assuntos
Mudança Climática , Ecossistema , Modelos Biológicos , Simulação por Computador , Estresse Fisiológico
10.
Ecology ; 97(10): 2867-2879, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859122

RESUMO

Ecosystem multifunctionality, the simultaneous production of multiple ecosystem functions, depends on community diversity, composition, productivity, and spatial scale. In metacommunities, each of these community properties is affected by how species disperse between local patches to track environmental change. Here we use a consumer-resource metacommunity model of resource competition to show how dispersal affects the link between diversity, composition, and ecosystem multifunctionality. When species differ in their functional traits and environmental niche, metacommunity multifunctionality becomes highly dependent upon dispersal, which allows community diversity to be maintained when environmental conditions change. Dispersal promotes multifunctionality in two ways: (1) species sorting, whereby species track local environmental changes by shifting in space, thus preserving diversity and ensuring high biomass productivity, and (2) mass effects, whereby source-sink dynamics allow species to persist in suboptimal environments, thus increasing local diversity. Changing the rate at which species disperse affects the strength of these metacommunity processes, and so metacommunity multifunctionality exhibits a unimodal relationship with dispersal, peaking when dispersal is intermediate. Species-sorting dynamics also provide spatial insurance whereby compensatory dynamics stabilize the fluctuations of each function through time at the regional scale. However, this does not extend to the local scale, where species sorting results in high temporal variability for each function, even though the overall rates of multifunctionality are high. Our results suggest that metacommunity processes are important determinants of ecosystem multifunctionality, and thus effective management of multiple ecosystem functions requires consideration of landscape connectivity.


Assuntos
Biodiversidade , Ecossistema , Biomassa , Modelos Biológicos , Dinâmica Populacional
11.
Ecol Lett ; 18(4): 375-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728551

RESUMO

Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long-term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal-scale monitoring records from north temperate-subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce, (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce. Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio-temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate-subarctic regions.


Assuntos
Mudança Climática , Cianobactérias/crescimento & desenvolvimento , Lagos/microbiologia , Temperatura , Cianobactérias/classificação , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Lagos/química , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Fatores de Tempo , Xantofilas/análise
12.
Philos Trans R Soc Lond B Biol Sci ; 378(1881): 20220191, 2023 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-37246387

RESUMO

In the coming decades, warming and deoxygenation of marine waters are anticipated to result in shifts in the distribution and abundance of fishes, with consequences for the diversity and composition of fish communities. Here, we combine fisheries-independent trawl survey data spanning the west coast of the USA and Canada with high-resolution regional ocean models to make projections of how 34 groundfish species will be impacted by changes in temperature and oxygen in British Columbia (BC) and Washington. In this region, species that are projected to decrease in occurrence are roughly balanced by those that are projected to increase, resulting in considerable compositional turnover. Many, but not all, species are projected to shift to deeper depths as conditions warm, but low oxygen will limit how deep they can go. Thus, biodiversity will likely decrease in the shallowest waters (less than 100 m), where warming will be greatest, increase at mid-depths (100-600 m) as shallow species shift deeper, and decrease at depths where oxygen is limited (greater than 600 m). These results highlight the critical importance of accounting for the joint role of temperature, oxygen and depth when projecting the impacts of climate change on marine biodiversity. This article is part of the theme issue 'Detecting and attributing the causes of biodiversity change: needs, gaps and solutions'.


Assuntos
Biodiversidade , Oxigênio , Animais , Peixes , Mudança Climática , Canadá , Ecossistema
13.
Ecology ; 93(6): 1421-30, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22834382

RESUMO

Climate warming is occurring in concert with other anthropogenic changes to ecosystems. However, it is unknown whether and how warming alters the importance of top-down vs. bottom-up control over community productivity and variability. We performed a 16-month factorial experimental manipulation of warming, nutrient enrichment, and predator presence in replicated freshwater pond mesocosms to test their independent and interactive impacts. Warming strengthened trophic cascades from fish to primary producers, and it decreased the impact of eutrophication on the mean and temporal variation of phytoplankton biomass. These impacts varied seasonally, with higher temperatures leading to stronger trophic cascades in winter and weaker algae blooms under eutrophication in summer. Our results suggest that higher temperatures may shift the control of primary production in freshwater ponds toward stronger top-down and weaker bottom-up effects. The dampened temporal variability of algal biomass under eutrophication at higher temperatures suggests that warming may stabilize some ecosystem processes.


Assuntos
Ecossistema , Eutrofização , Cadeia Alimentar , Água Doce , Aquecimento Global , Animais , Biomassa , Plâncton/citologia , Plâncton/fisiologia , Smegmamorpha/fisiologia , Fatores de Tempo
14.
J Anim Ecol ; 81(1): 251-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21950456

RESUMO

1. Climate change and other human-driven environmental perturbations are causing reductions in biodiversity and impacting the functioning of ecosystems on a global scale. Metacommunity theory suggests that ecosystem connectivity may reduce the magnitude of these impacts if the regional species pool contains functionally redundant species that differ in their environmental tolerances. Dispersal may increase the resistance of local ecosystems to environmental stress by providing regional species with traits adapted to novel conditions. 2. We tested this theory by subjecting freshwater zooplankton communities in mesocosms that were either connected to or isolated from the larger regional species pool to a factorial manipulation of experimental warming and increased salinity. 3. Compensation by regional taxa depended on the source of stress. Warming tolerant regional taxa partially compensated for reductions in heat sensitive local taxa but similar compensation did not occur under increased salinity. 4. Dispersal-mediated species invasions dampened the effects of warming on summer net ecosystem productivity. However, this buffering effect did not occur in the fall or for periphyton growth, the only other ecosystem function affected by the stress treatments. 5. The results indicate that regional biodiversity can provide insurance in a dynamic environment but that the buffering capacity is limited to some ecosystem processes and sources of stress. Maintaining regional biodiversity and habitat connectivity may therefore provide some limited insurance for local ecosystems in changing environments, but is unable to impart resistance against all sources of environmental stress.


Assuntos
Biodiversidade , Zooplâncton/fisiologia , Migração Animal , Animais , Biomassa , Colúmbia Britânica , Mudança Climática , Lagoas , Dinâmica Populacional , Salinidade , Estações do Ano , Temperatura
15.
Ecology ; 103(6): e3683, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35307820

RESUMO

In metacommunity ecology, a major focus has been on combining observational and analytical approaches to identify the role of critical assembly processes, such as dispersal limitation and environmental filtering, but this work has largely ignored temporal community dynamics. Here, we develop a "virtual ecologist" approach to evaluate assembly processes by simulating metacommunities varying in three main processes: density-independent responses to abiotic conditions, density-dependent biotic interactions, and dispersal. We then calculate a number of commonly used summary statistics of community structure in space and time and use random forests to evaluate their utility for inferring the strength of these three processes. We find that (i) both spatial and temporal data are necessary to disentangle metacommunity processes based on the summary statistics we test, and including statistics that are measured through time increases the explanatory power of random forests by up to 59% compared to cases where only spatial variation is considered; (ii) the three studied processes can be distinguished with different descriptors; and (iii) each summary statistic is differently sensitive to temporal and spatial sampling effort. Including repeated observations of metacommunities over time was essential for inferring the metacommunity processes, particularly dispersal. Some of the most useful statistics include the coefficient of variation of species abundances through time and metrics that incorporate variation in the relative abundances (evenness) of species. We conclude that a combination of methods and summary statistics is probably necessary to understand the processes that underlie metacommunity assembly through space and time, but we recognize that these results will be modified when other processes or summary statistics are used.


Assuntos
Biodiversidade , Ecossistema , Ecologia
16.
Biol Rev Camb Philos Soc ; 96(5): 2333-2354, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34080283

RESUMO

Biological insurance theory predicts that, in a variable environment, aggregate ecosystem properties will vary less in more diverse communities because declines in the performance or abundance of some species or phenotypes will be offset, at least partly, by smoother declines or increases in others. During the past two decades, ecology has accumulated strong evidence for the stabilising effect of biodiversity on ecosystem functioning. As biological insurance is reaching the stage of a mature theory, it is critical to revisit and clarify its conceptual foundations to guide future developments, applications and measurements. In this review, we first clarify the connections between the insurance and portfolio concepts that have been used in ecology and the economic concepts that inspired them. Doing so points to gaps and mismatches between ecology and economics that could be filled profitably by new theoretical developments and new management applications. Second, we discuss some fundamental issues in biological insurance theory that have remained unnoticed so far and that emerge from some of its recent applications. In particular, we draw a clear distinction between the two effects embedded in biological insurance theory, i.e. the effects of biodiversity on the mean and variability of ecosystem properties. This distinction allows explicit consideration of trade-offs between the mean and stability of ecosystem processes and services. We also review applications of biological insurance theory in ecosystem management. Finally, we provide a synthetic conceptual framework that unifies the various approaches across disciplines, and we suggest new ways in which biological insurance theory could be extended to address new issues in ecology and ecosystem management. Exciting future challenges include linking the effects of biodiversity on ecosystem functioning and stability, incorporating multiple functions and feedbacks, developing new approaches to partition biodiversity effects across scales, extending biological insurance theory to complex interaction networks, and developing new applications to biodiversity and ecosystem management.


Assuntos
Ecossistema , Seguro , Biodiversidade , Ecologia
17.
PLoS One ; 14(7): e0220213, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31318966

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0117595.].

18.
Science ; 366(6463): 339-345, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31624208

RESUMO

Human activities are fundamentally altering biodiversity. Projections of declines at the global scale are contrasted by highly variable trends at local scales, suggesting that biodiversity change may be spatially structured. Here, we examined spatial variation in species richness and composition change using more than 50,000 biodiversity time series from 239 studies and found clear geographic variation in biodiversity change. Rapid compositional change is prevalent, with marine biomes exceeding and terrestrial biomes trailing the overall trend. Assemblage richness is not changing on average, although locations exhibiting increasing and decreasing trends of up to about 20% per year were found in some marine studies. At local scales, widespread compositional reorganization is most often decoupled from richness change, and biodiversity change is strongest and most variable in the oceans.


Assuntos
Biodiversidade , Ecossistema , Animais , Geografia , Atividades Humanas , Humanos , Modelos Biológicos , Densidade Demográfica , Água do Mar
20.
Nat Ecol Evol ; 1(6): 162, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28812626

RESUMO

Ecological networks, such as food webs, mutualist webs and host-parasite webs, are reorganizing as species abundances and spatial distributions shift in response to environmental change. Current theoretical expectations for how this reorganization will occur are available for competition or for parts of interaction networks, but these may not extend to more complex networks. Here we use metacommunity theory to develop new expectations for how complex networks will reorganize under environmental change, and show that dispersal is crucial for determining the degree to which networks will retain their composition and structure. When dispersal between habitat patches is low, all types of species interactions act as a strong determinant for whether species can colonize suitable habitats. This colonization resistance drives species turnover, which breaks apart current networks and leads to the formation of new networks. However, when dispersal rates are increased, colonists arrive in high abundance in habitats where they are well adapted, so interactions with resident species contribute less to colonization success. Dispersal ensures that species associations are maintained as they shift in space, so networks retain similar composition and structure. The crucial role of dispersal reinforces the need to manage habitat connectivity to sustain species and interaction diversity into the future.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA