Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 26(11)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073542

RESUMO

3D porous scaffolds fabricated from binary and ternary blends of silk fibroin (SF), gelatin (G), and hyaluronan (HA) and crosslinked by the carbodiimide coupling reaction were developed. Water-stable scaffolds can be obtained after crosslinking, and the SFG and SFGHA samples were stable in cell culture medium up to 10 days. The presence of HA in the scaffolds with appropriate crosslinking conditions greatly enhanced the swellability. The microarchitecture of the freeze-dried scaffolds showed high porosity and interconnectivity. In particular, the pore size was significantly larger with an addition of HA. Biological activities of NIH/3T3 fibroblasts seeded on SFG and SFGHA scaffolds revealed that both scaffolds were able to support cell adhesion and proliferation of a 7-day culture. Furthermore, cell penetration into the scaffolds can be observed due to the interconnected porous structure of the scaffolds and the presence of bioactive materials which could attract the cells and support cell functions. The higher cell number was noticed in the SFGHA samples, possibly due to the HA component and the larger pore size which could improve the microenvironment for fibroblast adhesion, proliferation, and motility. The developed scaffolds from ternary blends showed potential in their application as 3D cell culture substrates in fibroblast-based tissue engineering.


Assuntos
Reagentes de Ligações Cruzadas/química , Fibroínas/química , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Animais , Bombyx , Adesão Celular , Proliferação de Células , Fibroblastos/metabolismo , Liofilização , Gelatina/química , Ácido Hialurônico/metabolismo , Imuno-Histoquímica , Camundongos , Células NIH 3T3 , Porosidade
2.
Development ; 138(15): 3261-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21750036

RESUMO

Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid(3) chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid(3) chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid(3) chicken mutants. We constitutively deleted these two exons to make a talpid3(-/-) mouse. Mutant mouse embryos lack primary cilia and, like talpid(3) chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid(3) chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3(-/-) mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.


Assuntos
Galinhas/genética , Botões de Extremidades/anatomia & histologia , Botões de Extremidades/embriologia , Morfogênese/genética , Proteínas/genética , Proteínas/metabolismo , Animais , Embrião de Galinha , Cílios/metabolismo , Embrião de Mamíferos/anormalidades , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Botões de Extremidades/anormalidades , Botões de Extremidades/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Osteogênese/fisiologia , Transdução de Sinais/fisiologia
3.
ACS Appl Mater Interfaces ; 16(7): 8250-8265, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38326106

RESUMO

Pillararene cross-linked gelatin hydrogels were designed and synthesized to control the uptake and release of antibiotics using light. A suite of characterization techniques ranging from spectroscopy (FT-IR, 1H and 13C NMR, and MAS NMR), X-ray crystallographic analysis, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA) was employed to investigate the physicochemical properties of hydrogels. The azobenzene-modified sulfamethoxazole (Azo-SMX) antibiotic was noncovalently incorporated into the hydrogel via supramolecular host-guest interactions to afford the A-hydrogel. While in its ground state, the Azo-SMX guest has a trans configuration structure and forms a thermodynamically stable inclusion complex with the pillar[5]arene motif in the hydrogel matrix. When the A-hydrogel was exposed to 365 nm UV light, Azo-SMX underwent a photoisomerization reaction. This changed the structure of Azo-SMX from trans to cis, and the material was released into the environment. The Azo-SMX released from the hydrogel was effective against both Gram-positive and Gram-negative bacteria. Importantly, the A-hydrogel exhibited a striking difference in antibacterial activity when applied to bacterial colonies in the presence and absence of UV light, highlighting the switchable antibacterial activity of A-hydrogel aided by light. In addition, all hydrogels containing pillar[5]arenes have demonstrated biocompatibility and effectiveness as scaffolds for biological and medical purposes.


Assuntos
Antibacterianos , Gelatina , Antibacterianos/farmacologia , Sulfametoxazol/farmacologia , Hidrogéis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Bactérias Gram-Negativas , Bactérias Gram-Positivas
4.
Sci Rep ; 14(1): 4428, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-38395958

RESUMO

Controlled release of proteins, such as growth factors, from biocompatible silk fibroin (SF) hydrogel is valuable for its use in tissue engineering, drug delivery, and other biological systems. To achieve this, we introduced silk fibroin-mimetic peptides (SFMPs) with the repeating unit (GAGAGS)n. Using green fluorescent protein (GFP) as a model protein, our results showed that SFMPs did not affect the GFP function when conjugated to it. The SFMP-GFP conjugates incorporated into SF hydrogel did not change the gelation time and allowed for controlled release of the GFP. By varying the length of SFMPs, we were able to modulate the release rate, with longer SFMPs resulting in a slower release, both in water at room temperature and PBS at 37 °C. Furthermore, the SF hydrogel with the SFMPs showed greater strength and stiffness. The increased ß-sheet fraction of the SF hydrogel, as revealed by FTIR analysis, explained the gel properties and protein release behavior. Our results suggest that the SFMPs effectively control protein release from SF hydrogel, with the potential to enhance its mechanical stability. The ability to modulate release rates by varying the SFMP length will benefit personalized and controlled protein delivery in various systems.


Assuntos
Fibroínas , Fibroínas/química , Hidrogéis/química , Preparações de Ação Retardada , Peptídeos , Sistemas de Liberação de Medicamentos , Seda/química
5.
ACS Omega ; 8(2): 2065-2076, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36687022

RESUMO

Bone morphogenetic protein-2 (BMP-2) is a promising osteogenic agent in tissue engineering. BMP-2 is usually expressed in Escherichia coli owing to the high yield and low cost, but the protein is expressed as inclusion bodies. Thus, the bottleneck for BMP-2 production in E. coli is the refolding process. Here, we explored the effects of the refolding buffer composition on BMP-2 refolding. The BMP-2 inclusion body was solubilized in urea and subjected to refolding by the dilution method. Various additives were investigated to improve the BMP-2 refolding yield. Nonreducing SDS-PAGE showed that BMP-2 dimers, the presumably biologically active form, were detected at approximately 25 kDa. The highest yield of the BMP-2 dimers was observed in the refolding buffer that contained ionic detergents (sarkosyl and cetylpyridinium chloride) followed by zwitterionic and nonionic detergents (NDSB-195, NP-40, and Tween 80). In addition, sugars (glucose, sorbitol, and sucrose) in combination with anionic detergents (sodium dodecyl sulfate and sarkosyl) reduced BMP-2 oligomers and increased the BMP-2 dimer yield. Subsequently, the refolded BMP-2s were tested for their bioactivity using the alkaline phosphatase assay in osteogenic cells (SaOS-2), as well as the luciferase reporter assay and the calcium assays. The refolded BMP-2 showed the activities in the calcium deposition assay and the luciferase reporter assay but not in the alkaline phosphatase activity assay or the intracellular calcium assay even though the dimers were clearly detected. Therefore, the detection of the disulfide-linked dimeric BMP-2 in nonreducing SDS-PAGE is an inadequate proxy for the bioactivity of BMP-2.

6.
Polymers (Basel) ; 15(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37765589

RESUMO

Gamma irradiation, which is one of the more conventional sterilization methods, was used to induce the hydrogelation of silk fibroin in this study. The physical and chemical characteristics of the irradiation-induced silk fibroin hydrogels were investigated. Silk fibroin solution with a concentration greater than 1 wt% formed hydrogel when irradiated by gamma rays at a dose of 25 or 50 kGy. The hydrogel induced by 50 kGy of radiation was more thermally stable at 80 °C than those induced by 25 kGy of radiation. When compared to the spontaneously formed hydrogels, the irradiated hydrogels contained a greater fraction of random coils and a lower fraction of ß-sheets. This finding implies that gelation via gamma irradiation occurs via other processes, in addition to crystalline ß-sheet formation, which is a well-established mechanism. Our observation suggests that crosslinking and chain scission via gamma irradiation could occur in parallel with the ß-sheet formation. The irradiation-induced hydrogels were obtained when the solution concentration was adequate to support the radiation crosslinking of the silk fibroin chains. This work has, therefore, demonstrated that gamma irradiation can be employed as an alternative method to produce chemical-free, random coil-rich, and sterilized silk fibroin hydrogels for biomedical applications.

7.
J Mater Chem B ; 11(16): 3607-3616, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37013997

RESUMO

Silk fibroin (SF) scaffolds have widely been used as functional materials for tissue engineering and implantation. For long-term applications, many cross-linking strategies have been developed to enhance the stability and enzymatic degradation of scaffolds. Although the biocompatibility of SF scaffolds has been investigated, less is known about the extent to which the degradation products of these scaffolds affect the host response in the long term after implantation. In this work, we first studied the effect of two different crosslinkers, namely, 1-ethyl-3-(3-dimethylaminopropyl-carbodiimide hydrochloride) (EDC) and glutaraldehyde (GA), on the topology, mechanical stability and enzymatic degradation of SF scaffolds. We found that the SF scaffolds treated with GA (GA-SF) appeared to show an increase in the sheet thickness and a higher elastic modulus when compared to that treated with EDC (EDC-SF) at a similar level of crosslinking degree. The uncrosslinked and both crosslinked SF scaffolds were completely digested by proteinase K but were not susceptible to degradation by collagenase type IV and trypsin. We next investigated the effect of the degradation of SF on the cytotoxicity, genotoxicity, and immunogenicity. The results demonstrated that the degradation products of the uncrosslinked and crosslinked SFs did not trigger cell proliferation, cell death, or genotoxicity in primary human cells, while they appeared to modulate the phenotypes of macrophages. The degradation products of GA-SF promoted pro-inflammatory phenotypes, while those from EDC-SF enhanced polarization towards anti-inflammatory macrophages. Our results demonstrated that the degradation products of SF scaffolds can mediate the immune modulation of macrophages, which can be implemented as a therapeutic strategy to control the long-term immune response during implantation.


Assuntos
Fibroínas , Humanos , Fibroínas/farmacologia , Alicerces Teciduais , Engenharia Tecidual/métodos , Carbodi-Imidas , Reagentes de Ligações Cruzadas , Glutaral
8.
R Soc Open Sci ; 8(3): 201618, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33959331

RESUMO

Angiogenesis is a crucial step in tissue regeneration and repair. Biomaterials that allow or promote angiogenesis are thus beneficial. In this study, angiogenic properties of salt-leached silk fibroin (SF) scaffolds seeded with human adipose stem cells (hADSCs) were studied using chick chorioallantoic membrane (CAM) as a model. The hADSC-seeded SF scaffolds (SF-hADSC) with the porosity of 77.34 ± 6.96% and the pore diameter of 513.95 ± 4.99 µm were implanted on the CAM of chick embryos that were on an embryonic day 8 (E8) of development. The SF-hADSC scaffolds induced a spoke-wheel pattern of capillary network indicative of angiogenesis, which was evident since E11. Moreover, the ingrowth of blood vessels into the scaffolds was seen in histological sections. The unseeded scaffolds induced the same extent of angiogenesis later on E14. By contrast, the control group could not induce the same extent of angiogenesis. In vitro cytotoxicity tests and in vivo angioirritative study reaffirmed the biocompatibility of the scaffolds. This work highlighted that the biocompatible SF-hADSC scaffolds accelerate angiogenesis, and hence they can be a promising biomaterial for the regeneration of tissues that require angiogenesis.

9.
ACS Chem Biol ; 15(12): 3235-3243, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33200610

RESUMO

Lipopolysaccharide (LPS) is a crucial component in the outer membrane of Gram-negative bacteria that contributes to both pathogenicity as well as immunity against pathogenic bacteria. Typical LPS contains GlcN disaccharide as the core of lipid A. However, some bacteria such as Acidithiobacillus ferrooxidans and Leptospira interrogans contain GlcN3N in lipid A instead. This modification has been shown to dampen the host immune response and increase resistance to antimicrobial peptides. Therefore, investigation of the enzymes responsible for the biosynthesis of GlcN3N has promising applications in the development of vaccines, antibiotics, or usage of the enzymes in chemoenzymatic synthesis of modified LPS. Here, we describe biochemical and structural investigation of GnnA from A. ferrooxidans (AfGnnA) that is responsible for oxidation of UDP-GlcNAc, which subsequently undergoes transamination to produce UDP-GlcNAc3N as a precursor for LPS biosynthesis. AfGnnA is specific for NAD+ and UDP-GlcNAc. The crystal structures of AfGnnA in combination with molecular dynamics simulation and mutational analysis suggest the substrate recognition mode and the catalytic mechanism. K91 or H164 is a potential catalytic base in the oxidation reaction. The results will not only provide insights into the biosynthesis of unusual LPS but will also lay the foundation for development of more immunogenic vaccines, novel antibiotics, or utilization of GnnA in the synthesis of UDP-sugars or modified LPS.


Assuntos
Acidithiobacillus/metabolismo , Lipopolissacarídeos/biossíntese , Lipopolissacarídeos/química , Configuração de Carboidratos , Lipopolissacarídeos/metabolismo , Modelos Moleculares , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA