RESUMO
Blocking chemokine receptor C-C chemoattractant cytokine (chemokine) receptor (CCR) 6-dependent T cell migration has therapeutic promise in inflammatory diseases. PF-07054894 is a novel CCR6 antagonist that blocked only CCR6, CCR7, and C-X-C chemoattractant cytokine (chemokine) receptor (CXCR) 2 in a ß-arrestin assay panel of 168 G protein-coupled receptors. Inhibition of CCR6-mediated human T cell chemotaxis by (R)-4-((2-(((1,4-Dimethyl-1H-pyrazol-3-yl)(1-methylcyclopentyl)methyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-3-hydroxy-N,N-dimethylpicolinamide (PF-07054894) was insurmountable by CCR6 ligand, C-C motif ligand (CCL) 20. In contrast, blockade of CCR7-dependent chemotaxis in human T cells and CXCR2-dependent chemotaxis in human neutrophils by PF-07054894 were surmountable by CCL19 and C-X-C motif ligand 1, respectively. [3H]-PF-07054894 showed a slower dissociation rate for CCR6 than for CCR7 and CXCR2 suggesting that differences in chemotaxis patterns of inhibition could be attributable to offset kinetics. Consistent with this notion, an analog of PF-07054894 with fast dissociation rate showed surmountable inhibition of CCL20/CCR6 chemotaxis. Furthermore, pre-equilibration of T cells with PF-07054894 increased its inhibitory potency in CCL20/CCR6 chemotaxis by 10-fold. The functional selectivity of PF-07054894 for inhibition of CCR6 relative to CCR7 and CXCR2 is estimated to be at least 50- and 150-fold, respectively. When administered orally to naïve cynomolgus monkeys, PF-07054894 increased the frequency of CCR6+ peripheral blood T cells, suggesting that blockade of CCR6 inhibited homeostatic migration of T cells from blood to tissues. PF-07054894 inhibited interleukin-23-induced mouse skin ear swelling to a similar extent as genetic ablation of CCR6. PF-07054894 caused an increase in cell surface CCR6 in mouse and monkey B cells, which was recapitulated in mouse splenocytes in vitro. In conclusion, PF-07054894 is a potent and functionally selective CCR6 antagonist that blocks CCR6-mediated chemotaxis in vitro and in vivo. SIGNIFICANCE STATEMENT: The chemokine receptor, C-C chemoattractant cytokine (chemokine) receptor 6 (CCR6) plays a key role in the migration of pathogenic lymphocytes and dendritic cells into sites of inflammation. (R)-4-((2-(((1,4-Dimethyl-1H-pyrazol-3-yl)(1-methylcyclopentyl)methyl)amino)-3,4-dioxocyclobut-1-en-1-yl)amino)-3-hydroxy-N,N-dimethylpicolinamide (PF-07054894) is a novel CCR6 small molecule antagonist that illustrates the importance of binding kinetics in achieving pharmacological potency and selectivity. Orally administered PF-07054894 blocks homeostatic and pathogenic functions of CCR6, suggesting that it is a promising therapeutic agent for the treatment of a variety of autoimmune and inflammatory diseases.
Assuntos
Quimiocinas CC , Interleucina-23 , Humanos , Animais , Camundongos , Quimiocinas CC/genética , Receptores CCR7 , Ligantes , Linfócitos T , Inflamação , Receptores CCR6RESUMO
Recent years have seen a resurgence in drug discovery efforts aimed at the identification of covalent inhibitors which has led to an explosion of literature reports in this area and most importantly new approved therapies. These reports and breakthroughs highlight the significant investments made across the industry in SAR campaigns to optimize inhibitors. The potency of covalent inhibitors is generally considered to be more accurately described by the time-independent kinetic parameter kinact/Ki rather than a by a simple IC50 since the latter is a time-dependent parameter. Enzyme substrate concentrations are an additional important factor to consider when attempting to translate parameters derived from enzymology experiments to phenotypic behavior in a physiologically relevant cell-based system. Theoretical and experimental investigations into the relationship between IC50, time, substrate concentration and Kinact/Ki provided us with an effective approach to provide meaningful data for SAR optimization. The data we generated for our JAK3 irreversible covalent inhibitor program using IC50 values provided by enzyme assays with long incubations (>1h) coupled with physiological substrate concentration provided the medicinal chemist with optimal information in a rapid and efficient manner. We further document the wide applicability of this method by applying it to other enzymes systems where we have run covalent inhibitor programs.
Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Relação Dose-Resposta a Droga , Humanos , Concentração Inibidora 50 , Janus Quinase 3/metabolismo , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Proteínas Recombinantes , Relação Estrutura-AtividadeRESUMO
The concept of target-specific covalent enzyme inhibitors appears attractive from both an efficacy and a selectivity viewpoint considering the potential for enhanced biochemical efficiency associated with an irreversible mechanism. Aside from potential safety concerns, clearance prediction of covalent inhibitors represents a unique challenge due to the inclusion of nontraditional metabolic pathways of direct conjugation with glutathione (GSH) or via GSH S-transferase-mediated processes. In this article, a novel pharmacokinetic algorithm was developed using a series of Pfizer kinase selective acrylamide covalent inhibitors based on their in vitro-in vivo extrapolation of systemic clearance in rats. The algorithm encompasses the use of hepatocytes as an in vitro model for hepatic clearance due to oxidative metabolism and GSH conjugation, and the use of whole blood as an in vitro surrogate for GSH conjugation in extrahepatic tissues. Initial evaluations with clinical covalent inhibitors suggested that the scaling algorithm developed from rats may also be useful for human clearance prediction when species-specific parameters, such as hepatocyte and blood stability and blood binding, were considered. With careful consideration of clearance mechanisms, the described in vitro-in vivo extrapolation approach may be useful to facilitate candidate optimization, selection, and prediction of human pharmacokinetic clearance during the discovery and development of targeted covalent inhibitors.
Assuntos
Hepatócitos/metabolismo , Microssomos Hepáticos/metabolismo , Modelos Biológicos , Preparações Farmacêuticas/metabolismo , Plasma/metabolismo , Inibidores de Proteínas Quinases/farmacocinética , Algoritmos , Animais , Avaliação Pré-Clínica de Medicamentos , Glutationa/metabolismo , Humanos , Técnicas In Vitro , Masculino , Taxa de Depuração Metabólica , Camundongos Endogâmicos C57BL , Preparações Farmacêuticas/sangue , Valor Preditivo dos Testes , Ligação Proteica , Inibidores de Proteínas Quinases/sangue , Ratos , Ratos Sprague-Dawley , Especificidade da EspécieRESUMO
The proteins of the Bcl-2 family play key roles in the regulation of programmed cell death by controlling the integrity of the outer mitochondrial membrane and the initiation of the apoptosis process. We performed extensive molecular dynamics simulations to investigate the conformational flexibility of the Bcl-xL protein in both the apo and holo (with Bad peptide and ABT-737) states. The accelerated molecular dynamics method implemented in Amber 14 was used to produce broader conformational sampling of 200 ns simulations. The pocket mining method based on the variational implicit-solvent model tracks the dynamic evolution of the ligand binding site with a druggability score characterizing the maximal affinity achievable by a drug-like molecule. Major movements were observed around the α3-helical domain and the loop region connecting the α1 and α2 helices, reshaping the ligand interaction in the BH3 binding groove. Starting with the apo crystal structure, which is recognized as "closed" and undruggable, the BH3 groove transitioned between the "open" and "closed" states during equilibrium simulation. Further analysis revealed a small percentage of the trajectory frames (â¼10%) with a moderate degree of druggability that mimic the ligand-bound states. The ability to attain and detect by computer simulation the most suitable conformational states for ligand binding in advance of compound synthesis and crystal structure solution is of immense value to the application and success of structure-based drug design.
Assuntos
Descoberta de Drogas , Simulação de Dinâmica Molecular , Proteína bcl-X/química , Proteína bcl-X/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Humanos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de ProteínaRESUMO
The CC chemokine receptor 6 (CCR6) is a potential target for chronic inflammatory diseases. Previously, we reported an active CCR6 structure in complex with its cognate chemokine CCL20, revealing the molecular basis of CCR6 activation. Here, we present two inactive CCR6 structures in ternary complexes with different allosteric antagonists, CCR6/SQA1/OXM1 and CCR6/SQA1/OXM2. The oxomorpholine analogues, OXM1 and OXM2 are highly selective CCR6 antagonists which bind to an extracellular pocket and disrupt the receptor activation network. An energetically favoured U-shaped conformation in solution that resembles the bound form is observed for the active analogues. SQA1 is a squaramide derivative with close-in analogues reported as antagonists of chemokine receptors including CCR6. SQA1 binds to an intracellular pocket which overlaps with the G protein site, stabilizing a closed pocket that is a hallmark of inactive GPCRs. Minimal communication between the two allosteric pockets is observed, in contrast to the prevalent allosteric cooperativity model of GPCRs. This work highlights the versatility of GPCR antagonism by small molecules, complementing previous knowledge of CCR6 activation, and sheds light on drug discovery targeting CCR6.
Assuntos
Receptores CCR6 , Receptores CCR6/metabolismo , Receptores CCR6/química , Humanos , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico , Ligação Proteica , Sítios de Ligação , Modelos Moleculares , Cristalografia por Raios XRESUMO
The inhibition of hH-PGDS has been proposed as a potential target for the development of anti-allergic and anti-inflammatory drugs. Herein we describe our investigation of the binding pocket of this important enzyme and our observation that two water molecules bind to our inhibitors and the enzyme. A series of compounds were prepared to the probe the importance of the water molecules in determining the binding affinity of the inhibitors to the enzyme. The study provides insight into the binding requirements for the design of potent hH-PGDS inhibitors.
Assuntos
Antialérgicos/química , Anti-Inflamatórios/química , Inibidores Enzimáticos/química , Oxirredutases Intramoleculares/antagonistas & inibidores , Lipocalinas/antagonistas & inibidores , Água/química , Antialérgicos/síntese química , Anti-Inflamatórios/síntese química , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Humanos , Oxirredutases Intramoleculares/metabolismo , Isoquinolinas/química , Lipocalinas/metabolismo , Naftalenos/química , Estrutura Terciária de ProteínaRESUMO
Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase responsible for the degradation of fatty acid amide signaling molecules such as endocannabinoid anandamide (AEA), which has been shown to possess cannabinoid-like analgesic properties. Herein we report the optimization of spirocyclic 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.5]decane urea covalent inhibitors of FAAH. Using an iterative design and optimization strategy, lead compounds were identified with a remarkable reduction in molecular weight and favorable CNS drug like properties. 3,4-Dimethylisoxazole and 1-methyltetrazole were identified as superior urea moieties for this inhibitor class. A dual purpose in vivo efficacy and pharmacokinetic screen was designed to be the key decision enabling experiment affording the ability to move quickly from compound synthesis to selection of preclinical candidates. On the basis of the remarkable potency, selectivity, pharmacokinetic properties and in vivo efficacy, PF-04862853 (15p) was advanced as a clinical candidate.
Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Dor/tratamento farmacológico , Compostos de Espiro/farmacologia , Administração Oral , Analgésicos/administração & dosagem , Analgésicos/química , Analgésicos/uso terapêutico , Animais , Compostos Aza/administração & dosagem , Compostos Aza/química , Compostos Aza/farmacologia , Compostos Aza/uso terapêutico , Disponibilidade Biológica , Cromatografia Líquida de Alta Pressão , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Ratos , Compostos de Espiro/administração & dosagem , Compostos de Espiro/química , Compostos de Espiro/uso terapêuticoRESUMO
Herein we report the identification of two new fatty acid amide hydrolase (FAAH) inhibitor lead series with FAAH k(inact)/K(i) potency values greater than 1500M(-1)s(-1). The two novel spirocyclic cores, 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.5]decane, clearly distinguished themselves from the other spirocyclic cores on the basis of their superior potency for FAAH. Lead compounds from these two series have suitable FAAH potency and selectivity for additional medicinal chemistry optimization.
Assuntos
Amidoidrolases/antagonistas & inibidores , Compostos Aza/farmacologia , Descoberta de Drogas , Inibidores Enzimáticos/farmacologia , Compostos de Espiro/farmacologia , Compostos Aza/química , Inibidores Enzimáticos/química , Modelos Moleculares , Compostos de Espiro/química , Relação Estrutura-AtividadeRESUMO
Autotaxin is the enzyme responsible for the production of lysophosphatidic acid (LPA) from lysophosphatidyl choline (LPC), and it is up-regulated in many inflammatory conditions, including but not limited to cancer, arthritis, and multiple sclerosis. LPA signaling causes angiogenesis, mitosis, cell proliferation, and cytokine secretion. Inhibition of autotaxin may have anti-inflammatory properties in a variety of diseases; however, this hypothesis has not been tested pharmacologically because of the lack of potent inhibitors. Here, we report the development of a potent autotaxin inhibitor, PF-8380 [6-(3-(piperazin-1-yl)propanoyl)benzo[d]oxazol-2(3H)-one] with an IC(50) of 2.8 nM in isolated enzyme assay and 101 nM in human whole blood. PF-8380 has adequate oral bioavailability and exposures required for in vivo testing of autotaxin inhibition. Autotaxin's role in producing LPA in plasma and at the site of inflammation was tested in a rat air pouch model. The specific inhibitor PF-8380, dosed orally at 30 mg/kg, provided >95% reduction in both plasma and air pouch LPA within 3 h, indicating autotaxin is a major source of LPA during inflammation. At 30 mg/kg PF-8380 reduced inflammatory hyperalgesia with the same efficacy as 30 mg/kg naproxen. Inhibition of plasma autotaxin activity correlated with inhibition of autotaxin at the site of inflammation and in ex vivo whole blood. Furthermore, a close pharmacokinetic/pharmacodynamic relationship was observed, which suggests that LPA is rapidly formed and degraded in vivo. PF-8380 can serve as a tool compound for elucidating LPA's role in inflammation.
Assuntos
Artrite Experimental/tratamento farmacológico , Benzoxazóis/farmacologia , Inibidores Enzimáticos/farmacologia , Lisofosfolipídeos/sangue , Complexos Multienzimáticos/antagonistas & inibidores , Fosfodiesterase I/antagonistas & inibidores , Piperazinas/farmacologia , Pirofosfatases/antagonistas & inibidores , Animais , Artrite Experimental/enzimologia , Benzoxazóis/farmacocinética , Benzoxazóis/uso terapêutico , Linhagem Celular , Clonagem Molecular , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacocinética , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Hiperalgesia/tratamento farmacológico , Hiperalgesia/enzimologia , Lisofosfolipídeos/biossíntese , Masculino , Camundongos , Estrutura Molecular , Complexos Multienzimáticos/sangue , Fosfodiesterase I/sangue , Diester Fosfórico Hidrolases , Piperazinas/farmacocinética , Piperazinas/uso terapêutico , Pirofosfatases/sangue , Ratos , Ratos Endogâmicos Lew , Proteínas Recombinantes/antagonistas & inibidoresRESUMO
The work described herein demonstrates the utility of structure-based drug design (SBDD) in shifting the binding mode of an HTS hit from a DFG-in to a DFG-out binding mode resulting in a class of novel potent CSF-1R kinase inhibitors suitable for lead development.
Assuntos
Inibidores de Proteínas Quinases/química , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Triagem em Larga Escala , Ligação de Hidrogênio , Conformação Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismoRESUMO
Fatty acid amide hydrolase (FAAH) has attracted significant attention due to its promise as an analgesic target. This has resulted in the discovery of numerous chemical classes as inhibitors of this potential therapeutic target. In this paper we disclose a new series of novel FAAH irreversible azetidine urea inhibitors. In general these compounds illustrate potent activity against the rat FAAH enzyme. Our SAR studies allowed us to optimize this series resulting in the identification of compounds 13 which were potent inhibitors of both human and rat enzyme. This series of compounds illustrated good hydrolase selectivity along with good PK properties.
Assuntos
Amidoidrolases/antagonistas & inibidores , Analgésicos/química , Azetidinas/química , Inibidores Enzimáticos/química , Piridazinas/química , Ureia/química , Amidoidrolases/metabolismo , Analgésicos/síntese química , Analgésicos/farmacocinética , Animais , Azetidinas/síntese química , Azetidinas/farmacocinética , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacocinética , Humanos , Piridazinas/síntese química , Piridazinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Ureia/síntese química , Ureia/farmacocinéticaRESUMO
The inhibition of PKC-zeta has been proposed to be a potential drug target for immune and inflammatory diseases. A series of 2-(6-phenyl-1H indazol-3-yl)-1H-benzo[d]imidazoles with initial high crossover to CDK-2 has been optimized to afford potent and selective inhibitors of protein kinase c-zeta (PKC-zeta). The determination of the crystal structures of key inhibitor:CDK-2 complexes informed the design and analysis of the series. The most selective and potent analog was identified by variation of the aryl substituent at the 6-position of the indazole template to give a 4-NH(2) derivative. The analog displays good selectivity over other PKC isoforms (alpha, betaII, gamma, delta, epsilon, mu, theta, eta and iota/lambda) and CDK-2, however it displays marginal selectivity against a panel of other kinases (37 profiled).
Assuntos
Benzimidazóis/síntese química , Química Farmacêutica/métodos , Inibidores Enzimáticos/farmacologia , Imidazóis/síntese química , Proteína Quinase C/química , Proteína Quinase C/isolamento & purificação , Benzimidazóis/farmacologia , Cristalografia por Raios X , Ciclina A/química , Quinase 2 Dependente de Ciclina/metabolismo , Desenho de Fármacos , Humanos , Imidazóis/farmacologia , Concentração Inibidora 50 , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Isoformas de ProteínasRESUMO
PF-06651600 was developed as an irreversible inhibitor of JAK3 with selectivity over the other three JAK isoforms. A high level of selectivity toward JAK3 is achieved by the covalent interaction of PF-06651600 with a unique cysteine residue (Cys-909) in the catalytic domain of JAK3, which is replaced by a serine residue in the other JAK isoforms. Importantly, 10 other kinases in the kinome have a cysteine at the equivalent position of Cys-909 in JAK3. Five of those kinases belong to the TEC kinase family including BTK, BMX, ITK, RLK, and TEC and are also inhibited by PF-06651600. Preclinical data demonstrate that inhibition of the cytolytic function of CD8+ T cells and NK cells by PF-06651600 is driven by the inhibition of TEC kinases. On the basis of the underlying pathophysiology of inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, alopecia areata, and vitiligo, the dual activity of PF-06651600 toward JAK3 and the TEC kinase family may provide a beneficial inhibitory profile for therapeutic intervention.
Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirimidinas/farmacologia , Pirróis/farmacologia , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/imunologia , CamundongosRESUMO
The discovery and initial optimization of a novel anthranilic acid derived class of antibacterial agents has been described in a recent series of papers. This paper describes the discovery of 1-acylindazol-3-ols as a novel bioisostere of an anthranilic acid. The synthesis and structure-activity relationships of the indazol bioisosteres are described herein.
Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Indazóis/síntese química , Indazóis/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , ortoaminobenzoatos/química , Antibacterianos/química , Técnicas de Química Combinatória , Cristalografia por Raios X , Indazóis/química , Testes de Sensibilidade Microbiana , Conformação Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Ongoing interest in the discovery of selective JAK3 inhibitors led us to design novel covalent inhibitors that engage the JAK3 residue Cys909 by cyanamide, a structurally and mechanistically differentiated electrophile from other cysteine reacting groups previously incorporated in JAK3 covalent inhibitors. Through crystallography, kinetic, and computational studies, interaction of cyanamide 12 with Cys909 was optimized leading to potent and selective JAK3 inhibitors as exemplified by 32. In relevant cell-based assays and in agreement with previous results from this group, 32 demonstrated that selective inhibition of JAK3 is sufficient to drive JAK1/JAK3-mediated cellular responses. The contribution from extrahepatic processes to the clearance of cyanamide-based covalent inhibitors was also characterized using metabolic and pharmacokinetic data for 12. This work also gave key insights into a productive approach to decrease glutathione/glutathione S-transferase-mediated clearance, a challenge typically encountered during the discovery of covalent kinase inhibitors.
Assuntos
Cianamida/química , Cianamida/farmacologia , Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Animais , Cianamida/farmacocinética , Avaliação Pré-Clínica de Medicamentos , Humanos , Concentração Inibidora 50 , Janus Quinase 3/química , Masculino , Modelos Moleculares , Conformação Proteica , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Distribuição TecidualRESUMO
Biochemical screening is a major source of lead generation for novel targets. However, during the process of small molecule lead optimization, compounds with excellent biochemical activity may show poor cellular potency, making structure-activity relationships difficult to decipher. This may be due to low membrane permeability of the molecule, resulting in insufficient intracellular drug concentration. The Cell Squeeze platform increases permeability regardless of compound structure by mechanically disrupting the membrane, which can overcome permeability limitations and bridge the gap between biochemical and cellular studies. In this study, we show that poorly permeable Janus kinase (JAK) inhibitors are delivered into primary cells using Cell Squeeze, inhibiting up to 90% of the JAK pathway, while incubation of JAK inhibitors with or without electroporation had no significant effect. We believe this robust intracellular delivery approach could enable more effective lead optimization and deepen our understanding of target engagement by small molecules and functional probes.
Assuntos
Inibidores de Janus Quinases/farmacologia , Janus Quinases/metabolismo , Dispositivos Lab-On-A-Chip , Leucócitos Mononucleares/efeitos dos fármacos , Membrana Celular , Células Cultivadas , Humanos , Inibidores de Janus Quinases/química , Leucócitos Mononucleares/fisiologia , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Significant work has been dedicated to the discovery of JAK kinase inhibitors resulting in several compounds entering clinical development and two FDA approved NMEs. However, despite significant effort during the past 2 decades, identification of highly selective JAK3 inhibitors has eluded the scientific community. A significant effort within our research organization has resulted in the identification of the first orally active JAK3 specific inhibitor, which achieves JAK isoform specificity through covalent interaction with a unique JAK3 residue Cys-909. The relatively rapid resynthesis rate of the JAK3 enzyme presented a unique challenge in the design of covalent inhibitors with appropriate pharmacodynamics properties coupled with limited unwanted off-target reactivity. This effort resulted in the identification of 11 (PF-06651600), a potent and low clearance compound with demonstrated in vivo efficacy. The favorable efficacy and safety profile of this JAK3-specific inhibitor 11 led to its evaluation in several human clinical studies.
Assuntos
Janus Quinase 3/antagonistas & inibidores , Inibidores de Proteínas Quinases/química , Pirimidinas/química , Pirróis/química , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Desenho de Fármacos , Humanos , Janus Quinase 3/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacologia , Pirimidinas/administração & dosagem , Pirimidinas/farmacologia , Pirróis/administração & dosagem , Pirróis/farmacologiaRESUMO
There has been significant interest in spleen tyrosine kinase (Syk) owing to its role in a number of disease states, including autoimmunity, inflammation, and cancer. Ongoing therapeutic programs have resulted in several compounds that are now in clinical use. Herein we report our optimization of the imidazopyrazine core scaffold of Syk inhibitors through the use of empirical and computational approaches. Free-energy perturbation (FEP) methods with MCPRO+ were undertaken to calculate the relative binding free energies for several alternate scaffolds. FEP was first applied retrospectively to determine if there is any predictive value; this resulted in 12 of 13 transformations being predicted in a directionally correct manner. FEP was then applied in a prospective manner to evaluate 17 potential targets, resulting in the realization of imidazotriazine 17 (3-(4-(3,4-dimethoxyphenylamino)imidazo[1,2-f][1,2,4]triazin-2-yl)benzamide), which shows a tenfold improvement in activity relative to the parent compound and no increase in atom count. Optimization of 17 led to compounds with nanomolar cellular activity.
Assuntos
Imidazóis/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Termodinâmica , Triazinas/farmacologia , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Proteínas Tirosina Quinases/metabolismo , Relação Estrutura-Atividade , Quinase Syk , Triazinas/síntese química , Triazinas/químicaRESUMO
Interleukin-17A (IL-17A) is a principal driver of multiple inflammatory and immune disorders. Antibodies that neutralize IL-17A or its receptor (IL-17RA) deliver efficacy in autoimmune diseases, but no small-molecule IL-17A antagonists have yet progressed into clinical trials. Investigation of a series of linear peptide ligands to IL-17A and characterization of their binding site has enabled the design of novel macrocyclic ligands that are themselves potent IL-17A antagonists.
Assuntos
Interleucina-17/antagonistas & inibidores , Interleucina-17/química , Peptídeos Cíclicos/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Algoritmos , Sítios de Ligação , Células Cultivadas , Desenho de Fármacos , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Compostos Macrocíclicos/química , Compostos Macrocíclicos/farmacologia , Simulação de Dinâmica Molecular , Peptídeos Cíclicos/química , Ligação Proteica , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-AtividadeRESUMO
IL-17A is a pro-inflammatory cytokine that has been implicated in autoimmune and inflammatory diseases. Monoclonal antibodies inhibiting IL-17A signaling have demonstrated remarkable efficacy, but an oral therapy is still lacking. A high affinity IL-17A peptide antagonist (HAP) of 15 residues was identified through phage-display screening followed by saturation mutagenesis optimization and amino acid substitutions. HAP binds specifically to IL-17A and inhibits the interaction of the cytokine with its receptor, IL-17RA. Tested in primary human cells, HAP blocked the production of multiple inflammatory cytokines. Crystal structure studies revealed that two HAP molecules bind to one IL-17A dimer symmetrically. The N-terminal portions of HAP form a ß-strand that inserts between two IL-17A monomers while the C-terminal section forms an α helix that directly blocks IL-17RA from binding to the same region of IL-17A. This mode of inhibition suggests opportunities for developing peptide antagonists against this challenging target.