Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pediatric Infect Dis Soc ; 13(3): 189-195, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38366142

RESUMO

BACKGROUND: Respiratory viral shedding is incompletely characterized by existing studies due to the lack of longitudinal nasal sampling and limited inclusion of healthy/asymptomatic children. We describe characteristics associated with prolonged virus detection by polymerase chain reaction (PCR) in a community-based birth cohort. METHODS: Children were followed from birth to 2 years of age in the PREVAIL cohort. Weekly nasal swabs were collected and tested using the Luminex Respiratory Pathogen Panel. Weekly text surveys were administered to ascertain the presence of acute respiratory illnesses defined as fever and/or cough. Maternal reports and medical chart abstractions identified healthcare utilization. Prolonged virus detection was defined as a persistently positive test lasting ≥4 weeks. Factors associated with prolonged virus detection were assessed using mixed effects multivariable logistic regression. RESULTS: From a sub-cohort of 101 children with ≥70% weekly swabs collected, a total of 1489 viral infections were detected. Prolonged virus detection was found in 23.4% of viral infections overall, 39% of bocavirus infections, 33% of rhinovirus/enterovirus infections, 14% of respiratory syncytial virus (RSV) A infections, and 7% of RSV B infections. No prolonged detection was found for influenza virus A or B, coronavirus 229E or HKU1, and parainfluenza virus 2 or 4 infections. First-lifetime infection with each virus, and co-detection of another respiratory virus were significantly associated with prolonged detection, while symptom status, child sex, and child age were not. CONCLUSIONS: Prolonged virus detection was observed in 1 in 4 viral infections in this cohort of healthy children and varied by pathogen, occurring most often for bocavirus and rhinovirus/enterovirus. Evaluating the immunological basis of how viral co-detections and recurrent viral infections impact duration of virus detection by PCR is needed to better understand the dynamics of prolonged viral shedding.


Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Infecções Respiratórias , Viroses , Vírus , Criança , Humanos , Lactente , Coorte de Nascimento , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Vírus/genética , Rhinovirus/genética , Vírus Sincicial Respiratório Humano/genética , Reação em Cadeia da Polimerase
2.
J Pediatric Infect Dis Soc ; 13(5): 265-273, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442245

RESUMO

BACKGROUND: The endemic coronaviruses OC43, HKU1, NL63, and 229E cause cold-like symptoms and are related to SARS-CoV-2, but their natural histories are poorly understood. In a cohort of children followed from birth to 4 years, we documented all coronavirus infections, including SARS-CoV-2, to understand protection against subsequent infections with the same virus (homotypic immunity) or a different coronavirus (heterotypic immunity). METHODS: Mother-child pairs were enrolled in metropolitan Cincinnati during the third trimester of pregnancy in 2017-2018. Mothers reported their child's sociodemographics, risk factors, and weekly symptoms. Mid-turbinate nasal swabs were collected weekly. Blood was collected at 6 weeks, 6, 12, 18, 24 months, and annually thereafter. Infections were detected by testing nasal swabs by an RT-PCR multi-pathogen panel and by serum IgG responses. Health care visits were documented from pediatric records. Analysis was limited to 116 children with high sample adherence. Reconsent for monitoring SARS-CoV-2 infections from June 2020 through November 2021 was obtained for 74 (64%) children. RESULTS: We detected 345 endemic coronavirus infections (1.1 infections/child-year) and 21 SARS-CoV-2 infections (0.3 infections/child-year). Endemic coronavirus and SARS-CoV-2 infections were asymptomatic or mild. Significant protective homotypic immunity occurred after a single infection with OC43 (77%) and HKU1 (84%) and after two infections with NL63 (73%). No heterotypic protection against endemic coronaviruses or SARS-CoV-2 was identified. CONCLUSIONS: Natural coronavirus infections were common and resulted in strong homotypic immunity but not heterotypic immunity against other coronaviruses, including SARS-CoV-2. Endemic coronavirus and SARS-CoV-2 infections in this US cohort were typically asymptomatic or mild.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Feminino , Pré-Escolar , Lactente , COVID-19/imunologia , COVID-19/epidemiologia , Recém-Nascido , SARS-CoV-2/imunologia , Gravidez , Masculino , Estados Unidos/epidemiologia , Estudos de Coortes , Anticorpos Antivirais/sangue , Doenças Endêmicas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/epidemiologia
3.
Lancet Microbe ; 5(3): e235-e246, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38286131

RESUMO

BACKGROUND: Prolonged SARS-CoV-2 infections in people who are immunocompromised might predict or source the emergence of highly mutated variants. The types of immunosuppression placing patients at highest risk for prolonged infection have not been systematically investigated. We aimed to assess risk factors for prolonged SARS-CoV-2 infection and associated intrahost evolution. METHODS: In this multicentre, prospective analysis, participants were enrolled at five US medical centres. Eligible patients were aged 18 years or older, were SARS-CoV-2-positive in the previous 14 days, and had a moderately or severely immunocompromising condition or treatment. Nasal specimens were tested by real-time RT-PCR every 2-4 weeks until negative in consecutive specimens. Positive specimens underwent viral culture and whole genome sequencing. A Cox proportional hazards model was used to assess factors associated with duration of infection. FINDINGS: From April 11, 2022, to Oct 1, 2022, 156 patients began the enrolment process, of whom 150 were enrolled and included in the analyses. Participants had B-cell malignancy or anti-B-cell therapy (n=18), solid organ transplantation or haematopoietic stem-cell transplantation (HSCT; n=59), AIDS (n=5), non-B-cell malignancy (n=23), and autoimmune or autoinflammatory conditions (n=45). 38 (25%) participants were real-time RT-PCR-positive and 12 (8%) were culture-positive 21 days or longer after initial SARS-CoV-2 detection or illness onset. Compared with the group with autoimmune or autoinflammatory conditions, patients with B-cell dysfunction (adjusted hazard ratio 0·32 [95% CI 0·15-0·64]), solid organ transplantation or HSCT (0·60 [0·38-0·94]), and AIDS (0·28 [0·08-1·00]) had longer duration of infection, defined as time to last positive real-time RT-PCR test. There was no significant difference in the non-B-cell malignancy group (0·58 [0·31-1·09]). Consensus de novo spike mutations were identified in five individuals who were real-time RT-PCR-positive longer than 56 days; 14 (61%) of 23 were in the receptor-binding domain. Mutations shared by multiple individuals were rare (<5%) in global circulation. INTERPRETATION: In this cohort, prolonged replication-competent omicron SARS-CoV-2 infections were uncommon. Within-host evolutionary rates were similar across patients, but individuals with infections lasting longer than 56 days accumulated spike mutations, which were distinct from those seen globally. Populations at high risk should be targeted for repeated testing and treatment and monitored for the emergence of antiviral resistance. FUNDING: US Centers for Disease Control and Prevention.


Assuntos
Síndrome da Imunodeficiência Adquirida , COVID-19 , Neoplasias , Humanos , Linfócitos B , COVID-19/epidemiologia , SARS-CoV-2/genética , Estados Unidos/epidemiologia , Estudos Prospectivos
4.
Access Microbiol ; 6(2)2024.
Artigo em Inglês | MEDLINE | ID: mdl-38482357

RESUMO

Severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2) is a novel human coronavirus that was identified in 2019. SARS-CoV-2 infection results in an acute, severe respiratory disease called coronavirus disease 2019 (COVID-19). The emergence and rapid spread of SARS-CoV-2 has led to a global public health crisis, which continues to affect populations across the globe. Real time reverse transcription polymerase chain reaction (rRT-PCR) is the reference standard test for COVID-19 diagnosis. Serological tests are valuable tools for serosurveillance programs and establishing correlates of protection from disease. This study evaluated the performance of one in-house enzyme linked immunosorbent assay (ELISA) utilizing the pre-fusion stabilized ectodomain of SARS-CoV-2 spike (S), two commercially available chemiluminescence assays Ortho VITROS Immunodiagnostic Products Anti-SARS-CoV-2 Total Reagent Pack and Abbott SARS-CoV-2 IgG assay and one commercially available Surrogate Virus Neutralization Test (sVNT), GenScript USA Inc., cPass SARS-CoV-2 Neutralization Antibody Detection Kit for the detection of SARS-CoV-2 specific antibodies. Using a panel of rRT-PCR confirmed COVID-19 patients' sera and a negative control group as a reference standard, all three immunoassays demonstrated high comparable positivity rates and low discordant rates. All three immunoassays were highly sensitive with estimated sensitivities ranging from 95.4-96.6 %. ROC curve analysis indicated that all three immunoassays had high diagnostic accuracies with area under the curve (AUC) values ranging from 0.9698 to 0.9807. High positive correlation was demonstrated among the conventional microneutralization test (MNT) titers and the sVNT inhibition percent values. Our study indicates that independent evaluations are necessary to optimize the overall utility and the interpretation of the results of serological tests. Overall, we demonstrate that all serological tests evaluated in this study are suitable for the detection of SARS-CoV-2 antibodies.

5.
PLoS One ; 19(4): e0301367, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625908

RESUMO

BACKGROUND: Understanding the immune response kinetics to SARS-CoV-2 infection and COVID-19 vaccination is important in nursing home (NH) residents, a high-risk population. METHODS: An observational longitudinal evaluation of 37 consenting vaccinated NH residents with/without SARS-CoV-2 infection from October 2020 to July 2022 was conducted to characterize the immune response to spike protein due to infection and/or mRNA COVID-19 vaccine. Antibodies (IgG) to SARS-CoV-2 full-length spike, nucleocapsid, and receptor binding domain protein antigens were measured, and surrogate virus neutralization capacity was assessed using Meso Scale Discovery immunoassays. The participant's spike exposure status varied depending on the acquisition of infection or receipt of a vaccine dose. Longitudinal linear mixed effects modeling was used to describe trajectories based on the participant's last infection or vaccination; the primary series mRNA COVID-19 vaccine was considered two spike exposures. Mean antibody titer values from participants who developed an infection post receipt of mRNA COVID-19 vaccine were compared with those who did not. In a subset of participants (n = 15), memory B cell (MBC) S-specific IgG (%S IgG) responses were assessed using an ELISPOT assay. RESULTS: The median age of the 37 participants at enrollment was 70.5 years; 30 (81%) had prior SARS-CoV-2 infection, and 76% received Pfizer-BioNTech and 24% Moderna homologous vaccines. After an observed augmented effect with each spike exposure, a decline in the immune response, including %S IgG MBCs, was observed over time; the percent decline decreased with increasing spike exposures. Participants who developed an infection at least two weeks post-receipt of a vaccine were observed to have lower humoral antibody levels than those who did not develop an infection post-receipt. CONCLUSIONS: These findings suggest that understanding the durability of immune responses in this vulnerable NH population can help inform public health policy regarding the timing of booster vaccinations as new variants display immune escape.


Assuntos
COVID-19 , Humanos , Idoso , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Georgia , SARS-CoV-2 , Vacinação , Imunidade , Casas de Saúde , RNA Mensageiro , Imunoglobulina G , Anticorpos Antivirais
6.
Vaccines (Basel) ; 12(5)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38793756

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into numerous lineages with unique spike mutations and caused multiple epidemics domestically and globally. Although COVID-19 vaccines are available, new variants with the capacity for immune evasion continue to emerge. To understand and characterize the evolution of circulating SARS-CoV-2 variants in the U.S., the Centers for Disease Control and Prevention (CDC) initiated the National SARS-CoV-2 Strain Surveillance (NS3) program and has received thousands of SARS-CoV-2 clinical specimens from across the nation as part of a genotype to phenotype characterization process. Focus reduction neutralization with various antisera was used to antigenically characterize 143 SARS-CoV-2 Delta, Mu and Omicron subvariants from selected clinical specimens received between May 2021 and February 2023, representing a total of 59 unique spike protein sequences. BA.4/5 subvariants BU.1, BQ.1.1, CR.1.1, CQ.2 and BA.4/5 + D420N + K444T; BA.2.75 subvariants BM.4.1.1, BA.2.75.2, CV.1; and recombinant Omicron variants XBF, XBB.1, XBB.1.5 showed the greatest escape from neutralizing antibodies when analyzed against post third-dose original monovalent vaccinee sera. Post fourth-dose bivalent vaccinee sera provided better protection against those subvariants, but substantial reductions in neutralization titers were still observed, especially among BA.4/5 subvariants with both an N-terminal domain (NTD) deletion and receptor binding domain (RBD) substitutions K444M + N460K and recombinant Omicron variants. This analysis demonstrated a framework for long-term systematic genotype to antigenic characterization of circulating and emerging SARS-CoV-2 variants in the U.S., which is critical to assessing their potential impact on the effectiveness of current vaccines and antigen recommendations for future updates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA