Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 34(40): 12036-12048, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30204449

RESUMO

Nanocrystalline apatites mimicking bone mineral represent a versatile platform for biomedical applications thanks to their similarity to bone apatite and the possibility to (multi)functionalize them so as to provide "à la carte" properties. One relevant domain is in particular oncology, where drug-loaded biomaterials and engineered nanosystems may be used for diagnosis, therapy, or both. In a previous contribution, we investigated the adsorption of doxorubicin onto two nanocrystalline apatite substrates, denoted HA and FeHA (superparamagnetic apatite doped with iron ions), and explored these drug-loaded systems against tumor cells. To widen their applicability in the oncology field, here we examine the interaction between the same two substrates and two other molecules: folic acid (FA), often used as cell targeting agent, and the anticancer drug methotrexate (MTX), an antifolate analogue. In a first stage, we investigated the adsorptive behavior of FA (or MTX) on both substrates, evidencing their specificities. At low concentration, typically under 100 mmol/L, adsorption onto HA was best described using the Sips isotherm model, while the formation of a calcium folate secondary salt was evidenced at high concentration by Raman spectroscopy. Adsorption onto FeHA was instead fitted to the Langmuir model. A larger adsorptive affinity was found for the FeHA substrate compared to HA; accordingly, a faster release was noticed from HA. In vitro tests carried out on human osteosarcoma cell line (SAOS-2) allowed us to evaluate the potential of these compounds in oncology. Finally, in vivo (subcutaneous) implantations in the mouse were run to ascertain the biocompatibility of the two substrates. These results should allow a better understanding of the interactions between FA/MTX and bioinspired nanocrystalline apatites in view of applications in the field of cancer.


Assuntos
Antineoplásicos/farmacologia , Antagonistas do Ácido Fólico/farmacologia , Ácido Fólico/química , Hidroxiapatitas/química , Metotrexato/farmacologia , Adsorção , Animais , Antineoplásicos/química , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Antagonistas do Ácido Fólico/química , Humanos , Hidroxiapatitas/toxicidade , Metotrexato/química , Camundongos Endogâmicos C57BL , Nanopartículas/química , Nanopartículas/toxicidade
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36770480

RESUMO

Biomimetic apatites exhibit a high reactivity allowing ion substitutions to modulate their in vivo response. We developed a novel approach combining several bioactive ions in a spatially controlled way in view of subsequent releases to address the sequence of events occurring after implantation, including potential microorganisms' colonization. Innovative micron-sized core-shell particles were designed with an external shell enriched with an antibacterial ion and an internal core substituted with a pro-angiogenic or osteogenic ion. After developing the proof of concept, two ions were particularly considered, Ag+ in the outer shell and Cu2+ in the inner core. In vitro evaluations confirmed the cytocompatibility through Ag-/Cu-substituting and the antibacterial properties provided by Ag+. Then, these multifunctional "smart" particles were embedded in a polymeric matrix by freeze-casting to prepare 3D porous scaffolds for bone engineering. This approach envisions the development of a new generation of scaffolds with tailored sequential properties for optimal bone regeneration.

3.
J Funct Biomater ; 13(3)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36135579

RESUMO

Bone infections are a key health challenge with dramatic consequences for affected patients. In dentistry, periodontitis is a medically compromised condition for efficient dental care and bone grafting, the success of which depends on whether the surgical site is infected or not. Present treatments involve antibiotics associated with massive bacterial resistance effects, urging for the development of alternative antibacterial strategies. In this work, we established a safe-by-design bone substitute approach by combining bone-like apatite to peroxide ions close to natural in vivo oxygenated species aimed at fighting pathogens. In parallel, bone-like apatites doped with Ag+ or co-doped Ag+/peroxide were also prepared for comparative purposes. The compounds were thoroughly characterized by chemical titrations, FTIR, XRD, SEM, and EDX analyses. All doped apatites demonstrated significant antibacterial properties toward four major pathogenic bacteria involved in periodontitis and bone infection, namely Porphyromonas gingivalis (P. gingivalis), Aggregatibacter actinomycetemcomitans (A. actinomycetemcomitans), Fusobacterium nucleatum (F. nucleatum), and S. aureus. By way of complementary tests to assess protein adsorption, osteoblast cell adhesion, viability and IC50 values, the samples were also shown to be highly biocompatible. In particular, peroxidated apatite was the safest material tested, with the lowest IC50 value toward osteoblast cells. We then demonstrated the possibility to associate such doped apatites with two biocompatible polymers, namely gelatin and poly(lactic-co-glycolic) acid PLGA, to prepare, respectively, composite 2D membranes and 3D scaffolds. The spatial distribution of the apatite particles and polymers was scrutinized by SEM and µCT analyses, and their relevance to the field of bone regeneration was underlined. Such bio-inspired antibacterial apatite compounds, whether pure or associated with (bio)polymers are thus promising candidates in dentistry and orthopedics while providing an alternative to antibiotherapy.

4.
J Mater Chem B ; 8(4): 629-635, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31789323

RESUMO

In the field of bone regeneration, some clinical conditions require highly-resorbable, reactive bone substitutes to rapidly initiate tissue neo-formation. In this view, Amorphous Calcium Phosphates (ACP) appear as well suited bioceramics taking into account their high metastability. However, the metastability also leads to difficulties of sintering without transformation into crystalline compounds. In this work, various calcium phosphate samples (co)doped with carbonate (CO32-) and magnesium ions were synthesized by the double decomposition method in alkaline media using ammonium and potassium hydroxide solutions. The obtained amorphous powders possess an exceptionally-high carbonate content up to 18.3 wt%. Spark Plasma Sintering (SPS) at very low temperature (150 °C) was then utilized to consolidate initial powders with the view to preserve their amorphous character. The influence of the introduction of different apatite growth inhibitors such as carbonate (CO32-) and magnesium ions was studied. XRD and FTIR analyses revealed that sintered ceramics generally consisted in highly carbonated low-crystallinity apatites, which are expected to have higher solubility than conventional apatite-based systems. However, most interestingly, modulation of the doping conditions allowed us to retain, for the first time, the amorphous character of ACP powders after SPS. Such consolidated ACP compounds may now be considered as a new family of bioceramics with high metastability allowing the fast release of bioactive ions upon resorption.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Fosfatos de Cálcio/química , Materiais Biocompatíveis/síntese química , Regeneração Óssea , Substitutos Ósseos/síntese química , Fosfatos de Cálcio/síntese química , Teste de Materiais , Solubilidade , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA