Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Physiol ; 600(10): 2293-2309, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35377950

RESUMO

Recently, studies have emerged suggesting that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. We investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. Na+ accumulation was induced in rats by a high salt diet (HSD) (8% NaCl and 1% saline to drink) or by implantation of a deoxycorticosterone acetate (DOCA) tablet (1% saline to drink) using rats on a low salt diet (LSD) (0.1% NaCl) on tap water as control. Na+ and K+ were assessed by ion chromatography in tissue eluates, and the extracellular volume by equilibration of 51 Cr-EDTA. By tangential sectioning of the skin, we found a low Na+ content and extracellular volume in epidermis, both parameters rising by ∼30% and 100%, respectively, in LSD and even more in HSD and DOCA when entering dermis. We found evidence for an extracellular Na+ gradient from epidermis to dermis shown by an estimated concentration in epidermis ∼2 and 4-5 times that of dermis in HSD and DOCA-salt. There was intracellular storage of Na+ in skin, muscle, and myocardium without a concomitant increase in hydration. Our data suggest that there is a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. Salt stress results in intracellular storage of Na+ in exchange with K+ in skeletal muscle and myocardium that may have electromechanical consequences. KEY POINTS: Studies have suggested that Na+ can be retained or removed without commensurate water retention or loss, and that the skin plays a role as major Na+ reservoir via regulation of the content of glycosaminoglycans and osmotic gradients. In the present study, we investigated whether there were electrolyte gradients in skin and where Na+ could be stored to be inactivated from a fluid balance viewpoint. We used two common models for salt-sensitive hypertension: high salt and a deoxycorticosterone salt diet. We found a hydration-dependent high interstitial fluid Na+ concentration that will contribute to the skin barrier and thus be a mechanism for limiting water loss. There was intracellular Na+ storage in muscle and myocardium without a concomitant increase in hydration, comprising storage that may have electromechanical consequences in salt stress.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Animais , Ratos , Pressão Sanguínea/fisiologia , Desoxicorticosterona/farmacologia , Eletrólitos , Glicosaminoglicanos , Íons , Ratos Sprague-Dawley , Sódio , Cloreto de Sódio , Água
2.
Cardiovasc Res ; 119(7): 1553-1567, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-36951047

RESUMO

AIMS: Cardiac energy metabolism is centrally involved in heart failure (HF), although the direction of the metabolic alterations is complex and likely dependent on the particular stage of HF progression. Vascular endothelial growth factor B (VEGF-B) has been shown to modulate metabolic processes and to induce physiological cardiac hypertrophy; thus, it could be cardioprotective in the failing myocardium. This study investigates the role of VEGF-B in cardiac proteomic and metabolic adaptation in HF during aldosterone and high-salt hypertensive challenges. METHODS AND RESULTS: Male rats overexpressing the cardiac-specific VEGF-B transgene (VEGF-B TG) were treated for 3 or 6 weeks with deoxycorticosterone-acetate combined with a high-salt (HS) diet (DOCA + HS) to induce hypertension and cardiac damage. Extensive longitudinal echocardiographic studies of HF progression were conducted, starting at baseline. Sham-treated rats served as controls. To evaluate the metabolic alterations associated with HF, cardiac proteomics by mass spectrometry was performed. Hypertrophic non-treated VEGF-B TG hearts demonstrated high oxygen and adenosine triphosphate (ATP) demand with early onset of diastolic dysfunction. Administration of DOCA + HS to VEGF-B TG rats for 6 weeks amplified the progression from cardiac hypertrophy to HF, with a drastic drop in heart ATP concentration. Dobutamine stress echocardiographic analyses uncovered a significantly impaired systolic reserve. Mechanistically, the hallmark of the failing TG heart was an abnormal energy metabolism with decreased mitochondrial ATP, preceding the attenuated cardiac performance and leading to systolic HF. CONCLUSIONS: This study shows that the VEGF-B TG accelerates metabolic maladaptation which precedes structural cardiomyopathy in experimental hypertension and ultimately leads to systolic HF.


Assuntos
Acetato de Desoxicorticosterona , Insuficiência Cardíaca Sistólica , Insuficiência Cardíaca , Hipertensão , Ratos , Masculino , Animais , Fator B de Crescimento do Endotélio Vascular/metabolismo , Insuficiência Cardíaca Sistólica/complicações , Proteômica , Hipertensão/metabolismo , Miocárdio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/complicações , Cardiomegalia/genética , Cardiomegalia/metabolismo
3.
Hypertension ; 79(11): 2451-2462, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36043415

RESUMO

BACKGROUND: Recent studies have indicated that sodium storage is influenced by macrophages that secrete VEGF-C (vascular endothelial growth factor) during salt stress thus stimulating lymphangiogenesis, thereby acting as a buffer against increased blood pressure (BP). We aimed to explore the role of dermal lymphatics in BP and sodium homeostasis. Our hypothesis was that mice with reduced dermal lymphatic vessels were more prone to develop salt-sensitive hypertension, and that mice with hyperplastic vessels were protected. METHODS: Mice with either hypoplastic (Chy), absent (K14-VEGFR3 [vascular endothelial growth factor receptor 3]-Ig), or hyperplastic (K14-VEGF-C) dermal lymphatic vessels and littermate controls were given high-salt diet (4% NaCl in the chow), deoxycorticosterone acetate (DOCA)-salt diet and 1% saline to drink or nitric oxide blocker diet L-NG-nitro arginine methyl ester (followed by high salt diet). BP was measured by telemetric recording, and tissue sodium content by ion chromatography. RESULTS: In contrast to previous studies, high salt diet did not induce an increase in BP or sodium storage in any of the mouse strains investigated. DOCA-salt, on the other hand, gave an increase in BP in Chy and K14-VEGFR3-Ig not different from their corresponding WT controls. DOCA induced salt storage in skin and muscle, but to the same extent in mice with dysfunctional lymphatic vessels and WT controls. Lymph flow as assessed by tracer washout was not affected by the diet in any of the mouse strains. CONCLUSIONS: Our results suggest that dermal lymphatic vessels are not involved in salt storage or blood pressure regulation in these mouse models of salt-sensitive hypertension.


Assuntos
Acetato de Desoxicorticosterona , Hipertensão , Camundongos , Animais , Pressão Sanguínea/fisiologia , Linfangiogênese , Fator C de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular , Modelos Animais de Doenças , Sódio , Engenharia Genética , Desoxicorticosterona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA