RESUMO
The exploitation of GLU988 and LYS903 residues in PARP1 as targets to design isoquinolinone (I & II) and naphthyridinone (III) analogues is described. Compounds of structure I have good biochemical and cellular potency but suffered from inferior PK. Constraining the linear propylene linker of structure I into a cyclopentene ring (II) offered improved PK parameters, while maintaining potency for PARP1. Finally, to avoid potential issues that may arise from the presence of an anilinic moiety, the nitrogen substituent on the isoquinolinone ring was incorporated as part of the bicyclic ring. This afforded a naphthyridinone scaffold, as shown in structure III. Further optimization of naphthyridinone series led to identification of a novel and highly potent PARP1 inhibitor 34, which was further characterized as preclinical candidate molecule. Compound 34 is orally bioavailable and displayed favorable pharmacokinetic (PK) properties. Compound 34 demonstrated remarkable antitumor efficacy both as a single-agent as well as in combination with chemotherapeutic agents in the BRCA1 mutant MDA-MB-436 breast cancer xenograft model. Additionally, compound 34 also potentiated the effect of agents such as temozolomide in breast cancer, pancreatic cancer and Ewing's sarcoma models.
Assuntos
Antineoplásicos/química , Naftiridinas/química , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Inibidores de Poli(ADP-Ribose) Polimerases/química , Quinolonas/química , Animais , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meia-Vida , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Naftiridinas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Quinolonas/metabolismo , Relação Estrutura-Atividade , Transplante HeterólogoRESUMO
The discovery of a series of thiophenephenylsulfonamides as positive allosteric modulators (PAM) of α7 nicotinic acetylcholine receptor (α7 nAChR) is described. Optimization of this series led to identification of compound 28, a novel PAM of α7 nicotinic acetylcholine receptor (α7 nAChR). Compound 28 showed good in vitro potency, with pharmacokinetic profile across species with excellent brain penetration and residence time. Compound 28 robustly reversed the cognitive deficits in episodic/working memory in both time-delay and scopolamine-induced amnesia paradigms in the novel object and social recognition tasks, at very low dose levels. Additionally, compound 28 has shown excellent safety profile in phase 1 clinical trials and is being evaluated for efficacy and safety as monotherapy in patients with mild to moderate Alzheimer's disease.