Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Nano Lett ; 24(6): 1967-1973, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38289648

RESUMO

Interfaces play a critical thermodynamic role in the existence of multilayer systems. Due to their utility in bridging energetic and compositional differences between distinct species, the formation of interfaces inherently creates internal strain in the bulk due to the reorganization needed to accommodate such a change. We report the effect of scaling interfacial stress by deposition of different adlayers on a host thin metal film. Intrinsic property differences between host and deposited metal atoms result in varying degree of composition and energy gradient within the interface. Interfacial stress can increase defects in the host leading to (i) energy dissipation and reorganization to minimize surface energy, and (ii) increased material strength. We infer that dissipation of interfacial stress induces defect migration, hence bulk and surface atomic reconstruction as captured by the surface roughness and grain size reduction coupled with a concomitant increase in material strength.

2.
Angew Chem Int Ed Engl ; 63(27): e202318949, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38446671

RESUMO

Lanthanoid carboxylates were synthesized and in situ self-assembled to illustrate temperature-driven evolution in chromaticity. Evolution in structure (crystallinity), composition, luminosity, and chromaticity were investigated revealing the coupled role of divergence in order/structure (spatial organization), and composition in tuning observed color. Loss of crystallinity or increase in residual carbon leads to decrease in luminosity even with increase in hue. Comparing Ho and Er congeners shows that the density of accessible transition states relates to shifts in low and high wavelength components of color. This work demonstrates that, just as interface dipoles can lead to change in semiconductor band gap, structure and composition can analogously alter observed color.

3.
Angew Chem Int Ed Engl ; 62(44): e202308822, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37466460

RESUMO

Combustion is often difficult to spatially direct or tune associated kinetics-hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A 'surface-then-core' order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2 ) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and µm-diameter tubes from appropriately sized fibers.

4.
Angew Chem Int Ed Engl ; 61(29): e202205251, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35580255

RESUMO

The dependency of substrate roughness on wetting properties of self-assembled monolayers (SAMs) has been studied extensively, but most previous studies used limited selection of probing liquid and range of surface roughness. These studies disregarded the limit to observation of sub-nanometer odd-even parity effect, hence are inconclusive. In this work we report the role of solvent polarity on the roughness-dependency of wetting behavior of SAMs by studying static con-tact angle of a variety of probing liquids, with different polarities, on SAMs formed on Ag-based substrate with different surface morphology. By overlapping the roughness ranges with previous studies on Au, the limitation of surface roughness (RMS=1 nm) to observation of the odd-even effect using water as probing liquid was confirmed, but other probing liquid yielded different roughness-dependent behaviors, with more polar solvent showing more roughness-dependent behavior. Based on these observations, we concluded that there exists a phase-transition like behavior in SAMs due to substrate roughness and molecule chain length, but whose determination is dependent on the probing liquid.

5.
J Am Chem Soc ; 143(34): 13878-13886, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34415163

RESUMO

Self-assembled monolayers are predicated on thermodynamic equilibrium; hence, their properties project accessible relaxation pathways. Herein, we demonstrate that charge tunneling correlates with conformational degrees of freedom(s). Results from open chain and cyclic head groups show that, as expected, distribution in tunneling data correlates with the orientation of the head group, akin to the odd-even effect and more importantly the degree of conformational freedom, but fluctuates with applied bias. Trends in nature of distributions in current density illuminate the need for higher statistical moments in understanding these rather dynamic systems. We employ skewness, kurtosis, and estimation plots to show that the conformational degree of freedom in the head group significantly amplifies the odd-even effect and may lead to enhanced or perturbed tunneling based on whether the head group is on an odd- or even-parity spacer.

6.
Angew Chem Int Ed Engl ; 60(11): 5928-5935, 2021 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-33381886

RESUMO

Undercooling metals relies on frustration of liquid-solid transition mainly by an increase in activation energy. Passivating oxide layers are a way to isolate the core from heterogenous nucleants (physical barrier) while also raising the activation energy (thermodynamic/kinetic barrier) needed for solidification. The latter is due to composition gradients (speciation) that establishes a sharp chemical potential gradient across the thin (0.7-5 nm) oxide shell, slowing homogeneous nucleation. When this speciation is properly tuned, the oxide layer presents a previously unaccounted for interfacial tension in the overall energy landscape of the relaxing material. We demonstrate that 1) the integrity of the passivation oxide is critical in stabilizing undercooled particle, a key tenet in developing heat-free solders, 2) inductive effects play a critical role in undercooling, and 3) the magnitude of the influence of the passivating oxide can be larger than size effects in undercooling.

7.
Angew Chem Int Ed Engl ; 60(25): 13929-13936, 2021 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-33600027

RESUMO

Fabrication of tunable fine textures on solid metal surfaces often demands sophisticated reaction/processing systems. By exploiting in situ polymerization and self-assembly of inorganic adducts derived from liquid metals (the so-called HetMet reaction) with concomitant solidification, solid metal films with tunable texture are readily fabricated. Serving as a natural dimensional confinement, interparticle pores and capillary-adhered thin liquid films in a pre-packed bed of undercooled liquid metal particles lead to the expeditious surface accumulation of organometallic synthons, which readily oligomerize and self-assemble into concentration-dictated morphologies/patterns. Tuning particle size, particle packing (flat or textured), and reactant concentration generates diverse, autonomously organized organometallic structures on a metal particle bed. Concomitant solidification and sintering of the underlying undercooled particle bed led to a multiscale patterned solid metal surface. The process is illustrated by creating tunable features on pre-organized metal particle beds with concomitant tunable wettability as illustrated through the so-called petal and lotus effects.

8.
Angew Chem Int Ed Engl ; 59(38): 16346-16351, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32671888

RESUMO

Fabrication of bio-templated metallic structures is limited by differences in properties, processing conditions, packing, and material state(s). Herein, by using undercooled metal particles, differences in modulus and processing temperatures can be overcome. Adoption of autonomous processes such as self-filtration, capillary pressure, and evaporative concentration leads to enhanced packing, stabilization (jamming) and point sintering with phase change to create solid metal replicas of complex bio-based features. Differentiation of subtle differences between cultivars of the rose flower with reproduction over large areas shows that this biomimetic metal patterning (BIOMAP) is a versatile method to replicate biological features either as positive or negative reliefs irrespective of the substrate. Using rose petal patterns, we illustrate the versatility of bio-templated mapping with undercooled metal particles at ambient conditions, and with unprecedented efficiency for metal structures.


Assuntos
Materiais Biomiméticos/química , Bismuto/química , Índio/química , Estanho/química , Tamanho da Partícula , Propriedades de Superfície
9.
Angew Chem Int Ed Engl ; 59(1): 352-357, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31742876

RESUMO

Studies on passivating oxides on liquid metals are challenging, in part, due to plasticity, entropic, and technological limitations. In alloys, compositional complexity in the passivating oxide(s) and underlying metal interface exacerbates these challenges. This nanoscale complexity, however, offers an opportunity to engineer the surface of the liquid metal under felicitous choice of processing conditions. We inferred that difference in reactivity, coupled with inherent interface ordering, presages exploitable order and selectivity to autonomously present compositionally biased oxides on the surface of these metals. Besides compositional differences, sequential release of biased (enriched) components, via fractal-like paths, allows for patterned layered surface structures. We, therefore, present a simple thermal-oxidative compositional inversion (TOCI) method to introduce fractal-like structures on the surface of these metals in a controlled (tier, composition, and structure) manner by exploiting underlying stochastic fracturing process. Using a ternary alloy, a three-tiered (in structure and composition) surface structure is demonstrated.

10.
Langmuir ; 35(43): 13853-13859, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31585036

RESUMO

We have developed a new spray-based method for characterizing surface energies of planar, porous substrates. Distinct spray modes (electrospray versus electrostatic spray), from the porous substrates, occur in the presence of an applied DC potential after wetting with solvents of different surface tension. The ion current resulting from the spray process is maximized when the surface energy of the porous substrate approaches the surface tension of the wetting solvent. By monitoring the selected ion current (e.g., benzoylecgonine, m/z 290 → 168) with a mass spectrometer or the total ion current with an ammeter, we determined the solvent surface tension yielding the maximum ion current to indicate the surface energy of the solid. Detailed evaluations using polymeric substrates of known surface energies enabled effective calibration of the approach that resulted in the correct estimation of the surface energy of hydrophobic paper substrates prepared by gas-phase silanization. A three-parameter empirical model suggests that the experimentally observed ion current profile is governed by differential partitioning of analyte controlled by the interfacial forces between the wetting solvent and the porous substrate.

11.
J Am Chem Soc ; 140(38): 12303-12307, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30183277

RESUMO

Interfacial chemistry at organic-inorganic contact critically determines the function of a wide range of molecular and organic electronic devices and other systems. The chemistry is, however, difficult to understand due to the lack of easily accessible in-operando spectroscopic techniques that permit access to interfacial structure on a molecular scale. Herein, we compare two analogous junctions formed with identical organic thin film and different liquid top-contacts (water droplet vs eutectic gallium indium alloy) and elucidate the puzzling interfacial characteristics. Specifically, we fine-tune the surface topography of the organic surface using mixed self-assembled monolayers (SAMs): single component SAM composed of rectifier (2,2'-bipyridyl-terminated n-undecanethiolate; denoted as SC11BIPY) is systematically diluted with nonrectifying n-alkanethiolates of different lengths (denoted as SC n where n = 8, 10, 12, 14, 16, 18). Characterization of the resulting mixed SAMs in wettability and tunneling currents with the two separate liquid top-contacts allows us to investigate the role of phase segregation and gauche defect in the SAM//liquid interfaces. The results reported here show the difference in length between SC11BIPY and SC n is translated into nanoscopic pits and gauche-conformer defects on the surface, and the difference in contact force-hydrostatic vs user pressures-and hence conformity of contact account for the difference in wettability and rectification behaviors. Our work provides an insight into the role of molecule-electrode interfacial defects in performance of molecular-scale electronic devices.

12.
Anal Chem ; 90(15): 9353-9358, 2018 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-29975501

RESUMO

It is well-known that 2D dried blood spots on paper offer a facile sample collection, storage, and transportation of blood. However, large volume requirements, possible analyte instability, and difficult sample recovery plague this method, lowering confidence in analyte quantification. For the first time, we demonstrate a new approach using 3D dried blood spheroids for stabilization of small volume blood samples, mitigating these effects without cold storage. Blood spheroids form on hydrophobic paper, preventing interaction between the sample and paper substrate, eliminating all chromatographic effects. Stability of the enzyme alanine transaminase and labile organic compounds such as cocaine and diazepam were also shown to increase in the spheroid by providing a critical radius of insulation. On-surface analysis of the dried blood spheroids using paper spray mass spectrometry resulted in sub-ng/mL limits of detection for all illicit drugs tested, representing 1 order of magnitude improvement compared with analysis from 2D dried blood spots.


Assuntos
Teste em Amostras de Sangue Seco/métodos , Temperatura , Alanina Transaminase/sangue , Cocaína/sangue , Diazepam/sangue , Estabilidade Enzimática , Humanos , Interações Hidrofóbicas e Hidrofílicas , Limite de Detecção
13.
Macromol Rapid Commun ; 39(8): e1800026, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29516614

RESUMO

A facile method is reported for rapid, room-temperature synthesis of block copolymers (BCP) of complex morphology and hence nontraditional spherical assembly. The use of solvated electrons generates radical anions on olefinic monomers, and with a felicitous choice of monomer pairs, this species will propagate bimechanistically (via radical and the anion) to form BCPs. Molecular weight of the obtained BCP range from Mw = 97 000-404 000 g mol-1 (polydispersity index, PDI = 1.4-3.0) depending on monomer pairs. The composition of the blocks can be controlled by changing monomer ratio, with the caveat that yield is affected. Detailed characterization by 2D nuclear magnetic resonance spectroscopy, differential scanning calorimetry (DSC), and analysis of the mechanisms involved indicate the structure of obtained block copolymers to be at least a triblock with a complex central unit. Evaluating trends in the Hammett parameter segregates monomer pairs into "armed and disarmed" groups with respect to radical or anionic polymerization akin to oligosaccharides synthesis.


Assuntos
Substâncias Macromoleculares/química , Substâncias Macromoleculares/síntese química , Polímeros/química , Polímeros/síntese química , Varredura Diferencial de Calorimetria , Estrutura Molecular , Polimerização , Temperatura
14.
Phys Chem Chem Phys ; 20(7): 4864-4878, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29384159

RESUMO

Charge transport across large area molecular tunneling junctions is widely studied due to its potential in the development of quantum electronic devices. Large area junctions based on eutectic gallium indium (used in the form of a conical tip top electrode) have emerged as a reliable platform for delineating structure-property relationships. Discrepancies, however, arise from different tip-morphologies and fabrication techniques. It can be, therefore, challenging to make reliable conclusions based on molecular features. Of particular note is the discrepancy between the behaviors of hydrocarbons containing odd and even numbered carbons across different EGaIn electrodes. Moreover, inconsistencies in tip roughness and oxide thickness can lead to more than a 100× increase in current densities with narrow distribution in data. Besides effects on the precision vs. accuracy of data, a theoretically predicted length-dependent limit to observation of the odd-even effect has not been realized experimentally. We developed a method to chemically polish the EGaIn tip to allow formation of smooth conformal contact due to re-establishment of liquid character at the point of contact though tension-driven reconstruction of a thin oxide layer. To evaluate the polished tip, we measured charge transport behavior across n-alkanethiolate SAMs and observed good correlation in the odd-even oscillation behavior to that observed from wetting studies. Since these molecules are homologues of each other, only differing in the orientation of the terminal CH2CH3 moiety, the odd-even effects are governed by orientation induced differences in the absences of SAM (gauche) defects. Comparison of obtained data with the literature shows significant difference between odd-numbered SAMs across Ag and Au.

15.
Langmuir ; 33(47): 13451-13467, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28777587

RESUMO

Self-assembled monolayers (SAMs) have emerged as a simple platform technology and hence have been broadly studied. With advances in state-of-the-art fabrication and characterization methods, new insights into SAM structure and related properties have been delineated, albeit with some discrepancies and/or incoherencies. Some discrepancies, especially between experimental and theoretical work, are in part due to the misunderstanding of subtle structural features such as phase evolution and SAM quality. Recent work has, however, shown that simple techniques, such as the measurement of static contact angles, can be used to delineate otherwise complex properties of the SAM, especially when complemented by other more advanced techniques. In this article, we highlight the effect of nanoscale substrate asperities and molecular chain length on the SAM structure and associated properties. First, surfaces with tunable roughness are prepared on both Au and Ag, and their corresponding n-alkanethiolate SAMs are characterized through wetting and spectroscopy. From these data, chain-length- and substrate-morphology-dependent limits to the odd-even effect (structure and properties vary with the number of carbons in the molecules and the nature of the substrate), parametrization of gauche defect densities, and structural phase evolution (liquidlike, waxy, crystalline interfaces) are deduced. An evaluation of the correlation between the effect of roughness and the components of surface tension (polar-γp and dispersive-γd) reveals that wetting, at nanoscale rough surfaces, evolves proportionally with the ratio of the two components of surface tension. The evolution of conformational order is captured over a range of molecular lengths and parametrized through a dimensionless number, χc. By deploying a well-known tensiometry technique (herein the liquid is used to characterize the solid, hence the term inverse tensiometry) to characterize SAMs, we demonstrate that complex molecular-level phenomena in SAMs can be understood through simplicity.

16.
Phys Chem Chem Phys ; 19(10): 6989-6995, 2017 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-28244512

RESUMO

This paper reports the effects of substrate roughness on the odd-even effect in n-alkanethiolate self-assembled monolayers (SAMs) probed by vibrational sum frequency generation (SFG) spectroscopy. By fabricating SAMs on surfaces across the so-called odd-even limit, we demonstrate that differentiation of the vibrational frequencies of CH3 from SAMs derived from alkyl thiols with either odd (SAMO) or even (SAME) numbers of carbons depends on the roughness of the substrate on which they are formed. Odd-even oscillation in SFG susceptibility amplitudes was observed for spectra derived from SAME and SAMO fabricated on flat surfaces (RMS roughness = 0.4 nm) but not on rougher surfaces (RMS roughness = 2.38 nm). In addition, we discovered that local chemical environments for the terminal CH3 group have a chain-length dependence. There seems to be a transition at around C13, beyond which SAMs become "solid-like".

17.
Langmuir ; 32(32): 8230-7, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27448027

RESUMO

Substrate roughness influences the wetting properties of self-assembled monolayers (SAMs), but details on this dependency at the sub-nanometer level are still lacking. This study investigates the effect of surface roughness on interfacial properties of n-alkanethiolate SAMs, specifically wetting, and confirms the predicted limit to the observation of the odd-even effect in hydrophobicity. This article studies static contact angles of polar and nonpolar probe liquids on a series of n-alkanethiolate SAMs on surfaces with tunable roughness. We prepared Ag surfaces with root-mean-square roughness (Rrms) of ∼0.6-2.2 nm and compared the wetting properties of n-alkanethiolate SAMs fabricated on these surfaces. We measured the static contact angles, θs, formed between SAM and probe liquids [water, glycerol, and hexadecane]. Hexadecane showed an odd-even effect on all surfaces irrespective of the degree of roughness. Polar liquids (water and glycerol), however, showed a dependency on the roughness of the substrate with an odd-even effect observable only on smooth, but not rougher (Rrms ≥ 1.15 nm), surfaces. These results confirm that the previously predicted limit to observation of the odd-even effect in hydrophobicity (here extended to polar liquids) is real. From the results with glycerol, we infer that this limit is not limited just to hydrophobicity but may extend to other polar liquids. Results from hexadecane, however, suggest that this limit may not be a universal property of the SAM.

18.
Langmuir ; 32(40): 10358-10367, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27642814

RESUMO

Surface roughness, often captured through root-mean-square roughness (Rrms), has been shown to impact the quality of self-assembled monolayers (SAMs) formed on coinage metals. Understanding the effect of roughness on hydrophobicity of SAMs, however, is complicated by the odd-even effect-a zigzag oscillation in contact angles with changes in molecular length. We recently showed that for surfaces with Rrms > 1 nm, the odd-even effect in hydrophobicity cannot be empirically observed. In this report, we compare wetting properties of SAMs on Ag and Au surfaces of different morphologies across the Rrms ∼ 1 nm limit. We prepared surfaces with comparable properties (grain sizes and Rrms) and assessed the wetting properties of resultant SAMs. Substrates with Rrms either below or above the odd-even limit were investigated. With smoother surfaces (lower Rrms), an inverted asymmetric odd-even zigzag oscillation in static contact angles (θs) was observed with change from Au to Ag. Asymmetry in odd-even oscillation in Au was attributed to a larger change in θs from odd to even number of carbons in the n-alkanethiol and vice versa for Ag. For rougher surfaces, no odd-even effect was observed; however, a gradual increase in the static contact angle was observed. Increase in the average grain sizes (>3 times larger) on rough surfaces did not lead to significant difference in the wetting properties, suggesting that surface roughness significantly dominated the nature of the SAMs. We therefore infer that the predicted roughness-dependent limit to the observation of the odd-even effect in wetting properties of n-alkanethiols cannot be overcome by creating surfaces with large grain sizes for surfaces with Rrms > 1 nm. We also observed that the differences between Au and Ag surfaces are dominated by differences in the even-numbered SAMs, but this difference vanishes with shorter molecular chain length (≤C3).

19.
Phys Chem Chem Phys ; 18(36): 25284-25295, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27711677

RESUMO

The solid-state NMR spectra of many NMR active elements are often extremely broad due to the presence of chemical shift anisotropy (CSA) and/or the quadrupolar interaction (for nuclei with spin I > 1/2). These NMR interactions often give rise to wideline solid-state NMR spectra which can span hundreds of kHz or several MHz. Here we demonstrate that by using fast MAS, proton detection and dipolar hetero-nuclear multiple-quantum (D-HMQC) pulse sequences, it is possible to rapidly acquire 2D spectra which correlate 1H chemical shifts to the indirectly detected wideline MAS powder patterns of dipolar coupled hetero-nuclei. The D-HMQC pulse sequence enables broadband excitation of the wideline hetero-nuclear NMR spectrum and provides higher sensitivity by detecting the narrower and more sensitive 1H NMR signal. This approach is demonstrated for the rapid acquisition of 2D 1H detected 195Pt solid-state NMR spectra of cisplatin and transplatin and the 71Ga solid-state NMR spectrum of a self-assembled Ga coordination polymer of unconfirmed structure. This approach should be broadly applicable for the rapid acquisition of wideline MAS solid-state NMR spectra of moderately abundant NMR nuclei.

20.
Molecules ; 21(3): 272, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26927045

RESUMO

Pot-in-pot reactions are designed such that two reaction media (solvents, catalysts and reagents) are isolated from each other by a polymeric membrane similar to matryoshka dolls (Russian nesting dolls). The first reaction is allowed to progress to completion before triggering the second reaction in which all necessary solvents, reactants, or catalysts are placed except for the starting reagent for the target reaction. With the appropriate trigger, in most cases unidirectional flux, the product of the first reaction is introduced to the second medium allowing a second transformation in the same glass reaction pot--albeit separated by a polymeric membrane. The basis of these reaction systems is the controlled selective flux of one reagent over the other components of the first reaction while maintaining steady-state catalyst concentration in the first "pot". The use of ionic liquids as tools to control chemical potential across the polymeric membranes making the first pot is discussed based on standard diffusion models--Fickian and Payne's models. Besides chemical potential, use of ionic liquids as delivery agent for a small amount of a solvent that slightly swells the polymeric membrane, hence increasing flux, is highlighted. This review highlights the critical role ionic liquids play in site-isolation of multiple catalyzed reactions in a standard pot-in-pot reaction.


Assuntos
Líquidos Iônicos/química , Catálise , Compostos Orgânicos/síntese química , Polímeros/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA