Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 400
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 148(3): 434-46, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22304914

RESUMO

Susceptibility to tuberculosis is historically ascribed to an inadequate immune response that fails to control infecting mycobacteria. In zebrafish, we find that susceptibility to Mycobacterium marinum can result from either inadequate or excessive acute inflammation. Modulation of the leukotriene A(4) hydrolase (LTA4H) locus, which controls the balance of pro- and anti-inflammatory eicosanoids, reveals two distinct molecular routes to mycobacterial susceptibility converging on dysregulated TNF levels: inadequate inflammation caused by excess lipoxins and hyperinflammation driven by excess leukotriene B(4). We identify therapies that specifically target each of these extremes. In humans, we identify a single nucleotide polymorphism in the LTA4H promoter that regulates its transcriptional activity. In tuberculous meningitis, the polymorphism is associated with inflammatory cell recruitment, patient survival and response to adjunctive anti-inflammatory therapy. Together, our findings suggest that host-directed therapies tailored to patient LTA4H genotypes may counter detrimental effects of either extreme of inflammation.


Assuntos
Infecções por Mycobacterium/tratamento farmacológico , Infecções por Mycobacterium/imunologia , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Meníngea/imunologia , Animais , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Leucotrieno A4/genética , Leucotrieno A4/imunologia , Leucotrieno B4/genética , Leucotrieno B4/imunologia , Lipoxinas/imunologia , Mitocôndrias/metabolismo , Infecções por Mycobacterium/genética , Mycobacterium marinum , Polimorfismo Genético , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Transdução de Sinais , Transcrição Gênica , Tuberculose Meníngea/genética , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/imunologia
2.
N Engl J Med ; 389(15): 1357-1367, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37819954

RESUMO

BACKGROUND: Adjunctive glucocorticoids are widely used to treat human immunodeficiency virus (HIV)-associated tuberculous meningitis despite limited data supporting their safety and efficacy. METHODS: We conducted a double-blind, randomized, placebo-controlled trial involving HIV-positive adults (≥18 years of age) with tuberculous meningitis in Vietnam and Indonesia. Participants were randomly assigned to receive a 6-to-8-week tapering course of either dexamethasone or placebo in addition to 12 months of antituberculosis chemotherapy. The primary end point was death from any cause during the 12 months after randomization. RESULTS: A total of 520 adults were randomly assigned to receive either dexamethasone (263 participants) or placebo (257 participants). The median age was 36 years; 255 of 520 participants (49.0%) had never received antiretroviral therapy, and 251 of 484 participants (51.9%) with available data had a baseline CD4 count of 50 cells per cubic millimeter or less. Six participants withdrew from the trial, and five were lost to follow-up. During the 12 months of follow-up, death occurred in 116 of 263 participants (44.1%) in the dexamethasone group and in 126 of 257 participants (49.0%) in the placebo group (hazard ratio, 0.85; 95% confidence interval, 0.66 to 1.10; P = 0.22). Prespecified analyses did not reveal a subgroup that clearly benefited from dexamethasone. The incidence of secondary end-point events, including cases of immune reconstitution inflammatory syndrome during the first 6 months, was similar in the two trial groups. The numbers of participants with at least one serious adverse event were similar in the dexamethasone group (192 of 263 participants [73.0%]) and the placebo group (194 of 257 participants [75.5%]) (P = 0.52). CONCLUSIONS: Among HIV-positive adults with tuberculous meningitis, adjunctive dexamethasone, as compared with placebo, did not confer a benefit with respect to survival or any secondary end point. (Funded by the Wellcome Trust; ACT HIV ClinicalTrials.gov number, NCT03092817.).


Assuntos
Antirretrovirais , Antituberculosos , Dexametasona , Glucocorticoides , Infecções por HIV , Tuberculose Meníngea , Adulto , Humanos , Dexametasona/efeitos adversos , Dexametasona/uso terapêutico , Método Duplo-Cego , Glucocorticoides/efeitos adversos , Glucocorticoides/uso terapêutico , HIV , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Soropositividade para HIV/complicações , Soropositividade para HIV/tratamento farmacológico , Tuberculose Meníngea/complicações , Tuberculose Meníngea/tratamento farmacológico , Antituberculosos/efeitos adversos , Antituberculosos/uso terapêutico , Quimioterapia Combinada/efeitos adversos , Antirretrovirais/efeitos adversos , Antirretrovirais/uso terapêutico
3.
Brain ; 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38442687

RESUMO

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), remains a global health burden. While Mtb is primarily a respiratory pathogen, it can spread to other organs, including the brain and meninges, causing TB meningitis (TBM). However, little is known about the immunological mechanisms that leads to differential disease across organs. Attention has focused on differences in T cell responses in the control of Mtb in the lungs, but emerging data point to a role for antibodies, as both biomarkers of disease control and as antimicrobial molecules. Given an increasing appreciation for compartmentalized antibody responses across the blood brain barrier, here we characterized the antibody profiles across the blood and brain compartments during TBM, and determined whether Mtb-specific humoral immune responses differed between Mtb infection of the lung (pulmonary TB) and TBM. Using a high throughput systems serology approach, we deeply profiled the antibody responses against 10 different Mtb antigens, including lipoarabinomannan (LAM) and purified protein derivative (PPD), in HIV-negative adults with pulmonary TB (n=10) vs TBM (n=60). Antibody studies included analysis of immunoglobulin isotypes (IgG, IgM, IgA) and subclass levels (IgG1-4), the capacity of Mtb-specific antibodies to bind to Fc receptors or C1q, and to activate innate immune effectors functions (complement and NK cells activation, monocyte or neutrophil phagocytosis). Machine learning methods were applied to characterize serum and CSF responses in TBM, identify prognostic factors associated with disease severity, and define the key antibody features that distinguish TBM from pulmonary TB. In individuals with TBM, we identified CSF-specific antibody profiles that marked a unique and compartmentalized humoral response against Mtb, characterized by an enrichment of Mtb-specific antibodies able to robustly activate complement and drive phagocytosis by monocytes and neutrophils, all of which were associated with milder TBM severity at presentation. Moreover, individuals with TBM exhibited Mtb-specific antibodies in the serum with an increased capacity to activate phagocytosis by monocytes, compared to individuals with pulmonary TB, despite having lower IgG titers and Fcγ receptors (FcγR)-binding capacity. Collectively, these data point to functionally divergent humoral responses depending on the site of infection (i.e. lungs vs brain), and demonstrate a highly compartmentalized Mtb-specific antibody response within the CSF during TBM. Moreover, our results suggest that phagocytosis- and complement-mediating antibodies may promote attenuated neuropathology and milder TBM disease.

4.
J Infect Dis ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38169323

RESUMO

BACKGROUND: Tuberculous meningitis (TBM) is difficult to diagnose. We investigated whether a 3-gene host response signature in blood can distinguish TBM from other brain infections. METHODS: The expression of 3 genes (Dual specificity phosphatase 3- DUSP3, Guanylate-binding protein- GBP5, Krupple-like factor 2- KLF2) was analysed by RNA sequencing of archived whole blood from four cohorts of Vietnamese adults: 281 with TBM; 279 with pulmonary tuberculosis; 50 with other brain infections; and 30 healthy controls. 'TB scores' (combined 3-gene expression) were calculated following published methodology and discriminatory performance compared using area under a receiver operator characteristic curve (AUC). RESULTS: GBP5 was upregulated in TBM compared to other brain infections (p < 0.001), with no difference in DUSP3 and KLF2 expression. The diagnostic performance of GBP5 alone (AUC 0.74 (95% CI 0.67-0.81)) was slightly better than the 3-gene TB score (AUC 0.66, 95% CI 0.58-0.73) in TBM. Both GBP5 expression and TB score were higher in HIV-positive participants (P < 0.001), with good diagnostic performance of GBP5 alone (AUC 0.86, 95% CI 0.80-0.93). CONCLUSION: The 3-gene host signature in whole blood has the ability to discriminate TBM from other brain infections, including in HIV-positive individuals. Validation in large prospective diagnostic study is now required.

5.
Clin Infect Dis ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916975

RESUMO

BACKGROUND: Staphylococcus aureus bacteraemia (SAB) is a clinically heterogeneous disease. The ability to identify sub-groups of patients with shared traits (sub-phenotypes) is an unmet need that could allow patient stratification for clinical management and research. We aimed to test the hypothesis that clinically-relevant sub-phenotypes can be reproducibly identified amongst patients with SAB. METHODS: We studied three cohorts of hospitalised adults with monomicrobial SAB: a UK retrospective observational study (Edinburgh cohort, n=458), the UK ARREST randomised trial (n=758), and the Spanish SAFO randomised trial (n=214). Latent class analysis was used to identify sub-phenotypes using routinely-collected clinical data, without considering outcomes. Mortality and microbiologic outcomes were then compared between sub-phenotypes. RESULTS: Included patients had predominantly methicillin-susceptible SAB (1366/1430,95.5%). We identified five distinct, reproducible clinical sub-phenotypes: (A) SAB associated with older age and comorbidity, (B) nosocomial intravenous catheter-associated SAB in younger people without comorbidity, (C) community-acquired metastatic SAB, (D) SAB associated with chronic kidney disease, and (E) SAB associated with injection drug use. Survival and microbiologic outcomes differed between the sub-phenotypes. 84-day mortality was highest in sub-phenotype A, and lowest in B and E. Microbiologic outcomes were worse in sub-phenotype C. In a secondary analysis of the ARREST trial, adjunctive rifampicin was associated with increased 84-day mortality in sub-phenotype B and improved microbiologic outcomes in sub-phenotype C. CONCLUSIONS: We have identified reproducible and clinically-relevant sub-phenotypes within SAB, and provide proof-of-principle of differential treatment effects. Through clinical trial enrichment and patient stratification, these sub-phenotypes could contribute to a personalised medicine approach to SAB.

6.
Emerg Infect Dis ; 30(3): 499-509, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407176

RESUMO

We characterized the spatial distribution of drug-susceptible (DS) and multidrug-resistant (MDR) tuberculosis (TB) cases in Ho Chi Minh City, Vietnam, a major metropolis in southeastern Asia, and explored demographic and socioeconomic factors associated with local TB burden. Hot spots of DS and MDR TB incidence were observed in the central parts of Ho Chi Minh City, and substantial heterogeneity was observed across wards. Positive spatial autocorrelation was observed for both DS TB and MDR TB. Ward-level TB incidence was associated with HIV prevalence and the male proportion of the population. No ward-level demographic and socioeconomic indicators were associated with MDR TB case count relative to total TB case count. Our findings might inform spatially targeted TB control strategies and provide insights for generating hypotheses about the nature of the relationship between DS and MDR TB in Ho Chi Minh City and the wider southeastern region of Asia.


Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Masculino , Humanos , Vietnã/epidemiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Ásia , Análise Espacial
8.
J Clin Microbiol ; 62(4): e0128723, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38466092

RESUMO

Mortality from tuberculous meningitis (TBM) remains around 30%, with most deaths occurring within 2 months of starting treatment. Mortality from drug-resistant strains is higher still, making early detection of drug resistance (DR) essential. Targeted next-generation sequencing (tNGS) produces high read depths, allowing the detection of DR-associated alleles with low frequencies. We applied Deeplex Myc-TB-a tNGS assay-to cerebrospinal fluid (CSF) samples from 72 adults with microbiologically confirmed TBM and compared its genomic drug susceptibility predictions to a composite reference standard of phenotypic susceptibility testing (pDST) and whole genome sequencing, as well as to clinical outcomes. Deeplex detected Mycobacterium tuberculosis complex DNA in 24/72 (33.3%) CSF samples and generated full DR reports for 22/24 (91.7%). The read depth generated by Deeplex correlated with semi-quantitative results from MTB/RIF Xpert. Alleles with <20% frequency were seen at canonical loci associated with first-line DR. Disregarding these low-frequency alleles, Deeplex had 100% concordance with the composite reference standard for all drugs except pyrazinamide and streptomycin. Three patients had positive CSF cultures after 30 days of treatment; reference tests and Deeplex identified isoniazid resistance in two, and Deeplex alone identified low-frequency rifampin resistance alleles in one. Five patients died, of whom one had pDST-identified pyrazinamide resistance. tNGS on CSF can rapidly and accurately detect drug-resistant TBM, but its application is limited to those with higher bacterial loads. In those with lower bacterial burdens, alternative approaches need to be developed for both diagnosis and resistance detection.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Tuberculose Resistente a Múltiplos Medicamentos , Adulto , Humanos , Tuberculose Meníngea/diagnóstico , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Meníngea/líquido cefalorraquidiano , Mycobacterium tuberculosis/genética , Pirazinamida , Sensibilidade e Especificidade , Rifampina/farmacologia , Rifampina/uso terapêutico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Líquido Cefalorraquidiano , Testes de Sensibilidade Microbiana
9.
BMC Infect Dis ; 24(1): 164, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38326753

RESUMO

BACKGROUND: Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Escherichia coli, Streptococcus pneumoniae and Staphylococcus aureus are major bacterial causes of lower respiratory tract infections (LRTIs) globally, leading to substantial morbidity and mortality. The rapid increase of antimicrobial resistance (AMR) in these pathogens poses significant challenges for their effective antibiotic therapy. In low-resourced settings, patients with LRTIs are prescribed antibiotics empirically while awaiting several days for culture results. Rapid pathogen and AMR gene detection could prompt optimal antibiotic use and improve outcomes. METHODS: Here, we developed multiplex quantitative real-time PCR using EvaGreen dye and melting curve analysis to rapidly identify six major pathogens and fourteen AMR genes directly from respiratory samples. The reproducibility, linearity, limit of detection (LOD) of real-time PCR assays for pathogen detection were evaluated using DNA control mixes and spiked tracheal aspirate. The performance of RT-PCR assays was subsequently compared with the gold standard, conventional culture on 50 tracheal aspirate and sputum specimens of ICU patients. RESULTS: The sensitivity of RT-PCR assays was 100% for K. pneumoniae, A. baumannii, P. aeruginosa, E. coli and 63.6% for S. aureus and the specificity ranged from 87.5% to 97.6%. The kappa correlation values of all pathogens between the two methods varied from 0.63 to 0.95. The limit of detection of target bacteria was 1600 CFU/ml. The quantitative results from the PCR assays demonstrated 100% concordance with quantitative culture of tracheal aspirates. Compared to culture, PCR assays exhibited higher sensitivity in detecting mixed infections and S. pneumoniae. There was a high level of concordance between the detection of AMR gene and AMR phenotype in single infections. CONCLUSIONS: Our multiplex quantitative RT-PCR assays are fast and simple, but sensitive and specific in detecting six bacterial pathogens of LRTIs and their antimicrobial resistance genes and should be further evaluated for clinical utility.


Assuntos
Antibacterianos , Infecções Respiratórias , Humanos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Staphylococcus aureus/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Multiplex/métodos , Farmacorresistência Bacteriana , Bactérias/genética , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/microbiologia , Streptococcus pneumoniae/genética , Klebsiella pneumoniae/genética
10.
BMC Infect Dis ; 24(1): 163, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38321395

RESUMO

BACKGROUND: Diagnosis of tuberculous meningitis (TBM) is hampered by the lack of a gold standard. Current microbiological tests lack sensitivity and clinical diagnostic approaches are subjective. We therefore built a diagnostic model that can be used before microbiological test results are known. METHODS: We included 659 individuals aged [Formula: see text] years with suspected brain infections from a prospective observational study conducted in Vietnam. We fitted a logistic regression diagnostic model for TBM status, with unknown values estimated via a latent class model on three mycobacterial tests: Ziehl-Neelsen smear, Mycobacterial culture, and GeneXpert. We additionally re-evaluated mycobacterial test performance, estimated individual mycobacillary burden, and quantified the reduction in TBM risk after confirmatory tests were negative. We also fitted a simplified model and developed a scoring table for early screening. All models were compared and validated internally. RESULTS: Participants with HIV, miliary TB, long symptom duration, and high cerebrospinal fluid (CSF) lymphocyte count were more likely to have TBM. HIV and higher CSF protein were associated with higher mycobacillary burden. In the simplified model, HIV infection, clinical symptoms with long duration, and clinical or radiological evidence of extra-neural TB were associated with TBM At the cutpoints based on Youden's Index, the sensitivity and specificity in diagnosing TBM for our full and simplified models were 86.0% and 79.0%, and 88.0% and 75.0% respectively. CONCLUSION: Our diagnostic model shows reliable performance and can be developed as a decision assistant for clinicians to detect patients at high risk of TBM. Diagnosis of tuberculous meningitis is hampered by the lack of gold standard. We developed a diagnostic model using latent class analysis, combining confirmatory test results and risk factors. Models were accurate, well-calibrated, and can support both clinical practice and research.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Idoso , Tuberculose Meníngea/diagnóstico , Análise de Classes Latentes , Teorema de Bayes , Sensibilidade e Especificidade , Convulsões
11.
J Immunol ; 208(6): 1352-1361, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35217585

RESUMO

The major human genes regulating Mycobacterium tuberculosis-induced immune responses and tuberculosis (TB) susceptibility are poorly understood. Although IL-12 and IL-10 are critical for TB pathogenesis, the genetic factors that regulate their expression in humans are unknown. CNBP, REL, and BHLHE40 are master regulators of IL-12 and IL-10 signaling. We hypothesized that common variants in CNBP, REL, and BHLHE40 were associated with IL-12 and IL-10 production from dendritic cells, and that these variants also influence adaptive immune responses to bacillus Calmette-Guérin (BCG) vaccination and TB susceptibility. We characterized the association between common variants in CNBP, REL, and BHLHE40, innate immune responses in dendritic cells and monocyte-derived macrophages, BCG-specific T cell responses, and susceptibility to pediatric and adult TB in human populations. BHLHE40 single-nucleotide polymorphism (SNP) rs4496464 was associated with increased BHLHE40 expression in monocyte-derived macrophages and increased IL-10 from peripheral blood dendritic cells and monocyte-derived macrophages after LPS and TB whole-cell lysate stimulation. SNP BHLHE40 rs11130215, in linkage disequilibrium with rs4496464, was associated with increased BCG-specific IL-2+CD4+ T cell responses and decreased risk for pediatric TB in South Africa. SNPs REL rs842634 and rs842618 were associated with increased IL-12 production from dendritic cells, and SNP REL rs842618 was associated with increased risk for TB meningitis. In summary, we found that genetic variations in REL and BHLHE40 are associated with IL-12 and IL-10 cytokine responses and TB clinical outcomes. Common human genetic regulation of well-defined intermediate cellular traits provides insights into mechanisms of TB pathogenesis.


Assuntos
Mycobacterium bovis , Mycobacterium tuberculosis , Proteínas Proto-Oncogênicas c-rel/genética , Tuberculose , Adulto , Vacina BCG , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Criança , Proteínas de Homeodomínio , Humanos , Interleucina-10/genética , Interleucina-12/genética , Tuberculose/genética
12.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33658385

RESUMO

Adjunctive treatment with antiinflammatory corticosteroids like dexamethasone increases survival in tuberculosis meningitis. Dexamethasone responsiveness associates with a C/T variant in Leukotriene A4 Hydrolase (LTA4H), which regulates expression of the proinflammatory mediator leukotriene B4 (LTB4). TT homozygotes, with increased expression of LTA4H, have the highest survival when treated with dexamethasone and the lowest survival without. While the T allele is present in only a minority of the world's population, corticosteroids confer modest survival benefit worldwide. Using Bayesian methods, we examined how pretreatment levels of cerebrospinal fluid proinflammatory cytokines affect survival in dexamethasone-treated tuberculous meningitis. LTA4H TT homozygosity was associated with global cytokine increases, including tumor necrosis factor. Association between higher cytokine levels and survival extended to non-TT patients, suggesting that other genetic variants may also induce dexamethasone-responsive pathological inflammation. These findings warrant studies that tailor dexamethasone therapy to pretreatment cerebrospinal fluid cytokine concentrations, while searching for additional genetic loci shaping the inflammatory milieu.


Assuntos
Citocinas/líquido cefalorraquidiano , Dexametasona/administração & dosagem , Epóxido Hidrolases/genética , Variação Genética , Tuberculose Meníngea , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Taxa de Sobrevida , Tuberculose Meníngea/líquido cefalorraquidiano , Tuberculose Meníngea/tratamento farmacológico , Tuberculose Meníngea/genética , Tuberculose Meníngea/mortalidade
13.
J Infect Dis ; 228(3): 343-352, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-36823694

RESUMO

BACKGROUND: The purpose of this study was to assess if single nucleotide polymorphisms (SNPs) in lung mucins MUC5B and MUC5AC are associated with Mycobacterium tuberculosis outcomes. METHODS: Independent SNPs in MUC5B and MUC5AC (genotyped by Illumina HumanOmniExpress array) were assessed for associations with tumor necrosis factor (TNF) concentrations (measured by immunoassay) in cerebral spinal fluid (CSF) from tuberculous meningitis (TBM) patients. SNPs associated with CSF TNF concentrations were carried forward for analyses of pulmonary and meningeal tuberculosis susceptibility and TBM mortality. RESULTS: MUC5AC SNP rs28737416 T allele was associated with lower CSF concentrations of TNF (P = 1.8 × 10-8) and IFN-γ (P = 2.3 × 10-6). In an additive genetic model, rs28737416 T/T genotype was associated with higher susceptibility to TBM (odds ratio [OR], 1.24; 95% confidence interval [CI], 1.03-1.49; P = .02), but not pulmonary tuberculosis (OR, 1.11, 95% CI, .98-1.25; P = .10). TBM mortality was higher among participants with the rs28737416 T/T and T/C genotypes (35/119, 30.4%) versus the C/C genotype (11/89, 12.4%; log-rank P = .005) in a Vietnam discovery cohort (n = 210), an independent Vietnam validation cohort (n = 87; 9/87, 19.1% vs 1/20, 2.5%; log-rank P = .02), and an Indonesia validation cohort (n = 468, 127/287, 44.3% vs 65/181, 35.9%; log-rank P = .06). CONCLUSIONS: MUC5AC variants may contribute to immune changes that influence TBM outcomes.


Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Humanos , Tuberculose Meníngea/genética , Tuberculose Meníngea/complicações , Citocinas/genética , Genótipo , Fator de Necrose Tumoral alfa/genética , Polimorfismo de Nucleotídeo Único , Mucina-5AC/genética
14.
15.
Emerg Infect Dis ; 29(5): 1002-1006, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37015283

RESUMO

We analyzed 1,303 SARS-CoV-2 whole-genome sequences from Vietnam, and found the Alpha and Delta variants were responsible for a large nationwide outbreak of COVID-19 in 2021. The Delta variant was confined to the AY.57 lineage and caused >1.7 million infections and >32,000 deaths. Viral transmission was strongly affected by nonpharmaceutical interventions.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , SARS-CoV-2/genética , Vietnã/epidemiologia , Surtos de Doenças
16.
J Clin Microbiol ; 61(4): e0163422, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37010411

RESUMO

Offering patients with tuberculosis (TB) an optimal and timely treatment regimen depends on the rapid detection of Mycobacterium tuberculosis (Mtb) drug resistance from clinical samples. Finding Low Abundance Sequences by Hybridization (FLASH) is a technique that harnesses the efficiency, specificity, and flexibility of the Cas9 enzyme to enrich targeted sequences. Here, we used FLASH to amplify 52 candidate genes probably associated with resistance to first- and second-line drugs in the Mtb reference strain (H37Rv), then detect drug resistance mutations in cultured Mtb isolates, and in sputum samples. 92% of H37Rv reads mapped to Mtb targets, with 97.8% of target regions covered at a depth ≥ 10X. Among cultured isolates, FLASH-TB detected the same 17 drug resistance mutations as whole genome sequencing (WGS) did, but with much greater depth. Among the 16 sputum samples, FLASH-TB increased recovery of Mtb DNA compared with WGS (from 1.4% [IQR 0.5-7.5] to 33% [IQR 4.6-66.3]) and average depth reads of targets (from 6.3 [IQR 3.8-10.5] to 1991 [IQR 254.4-3623.7]). FLASH-TB identified Mtb complex in all 16 samples based on IS1081 and IS6110 copies. Drug resistance predictions for 15/16 (93.7%) clinical samples were highly concordant with phenotypic DST for isoniazid, rifampicin, amikacin, and kanamycin [15/15 (100%)], ethambutol [12/15 (80%)] and moxifloxacin [14/15 (93.3%)]. These results highlighted the potential of FLASH-TB for detecting Mtb drug resistance from sputum samples.


Assuntos
Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Escarro/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose/tratamento farmacológico , Mycobacterium tuberculosis/genética , Testes de Sensibilidade Microbiana
17.
Stat Med ; 42(8): 1156-1170, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36732886

RESUMO

In some clinical scenarios, for example, severe sepsis caused by extensively drug resistant bacteria, there is uncertainty between many common treatments, but a conventional multiarm randomized trial is not possible because individual participants may not be eligible to receive certain treatments. The Personalised Randomized Controlled Trial design allows each participant to be randomized between a "personalised randomization list" of treatments that are suitable for them. The primary aim is to produce treatment rankings that can guide choice of treatment, rather than focusing on the estimates of relative treatment effects. Here we use simulation to assess several novel analysis approaches for this innovative trial design. One of the approaches is like a network meta-analysis, where participants with the same personalised randomization list are like a trial, and both direct and indirect evidence are used. We evaluate this proposed analysis and compare it with analyses making less use of indirect evidence. We also propose new performance measures including the expected improvement in outcome if the trial's rankings are used to inform future treatment rather than random choice. We conclude that analysis of a personalized randomized controlled trial can be performed by pooling data from different types of participants and is robust to moderate subgroup-by-intervention interactions based on the parameters of our simulation. The proposed approach performs well with respect to estimation bias and coverage. It provides an overall treatment ranking list with reasonable precision, and is likely to improve outcome on average if used to determine intervention policies and guide individual clinical decisions.


Assuntos
Ensaios Clínicos Controlados Aleatórios como Assunto , Projetos de Pesquisa , Humanos , Medicina de Precisão , Participação do Paciente
18.
BMC Infect Dis ; 23(1): 447, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37400753

RESUMO

BACKGROUND: To improve tuberculosis (TB) diagnosis, the World Health Organisation (WHO) has called for a non-sputum based triage test to focus TB testing on people with a high likelihood of having active pulmonary tuberculosis (TB). Various host or pathogen biomarker-based testing devices are in design stage and require validity assessment. Host biomarkers have shown promise to accurately rule out active TB, but further research is required to determine generalisability. The TriageTB diagnostic test study aims to assess the accuracy of diagnostic test candidates, as well as field-test, finalise the design and biomarker signature, and validate a point-of-care multi-biomarker test (MBT). METHODS: This observational diagnostic study will evaluate sensitivity and specificity of biomarker-based diagnostic candidates including the MBT and Xpert® TB Fingerstick cartridge compared with a gold-standard composite TB outcome classification defined by symptoms, sputum GeneXpert® Ultra, smear and culture, radiological features, response to TB therapy and presence of an alternative diagnosis. The study will be conducted in research sites in South Africa, Uganda, The Gambia and Vietnam which all have high TB prevalence. The two-phase design allows for finalisation of the MBT in Phase 1 in which candidate host proteins will be evaluated on stored serum from Asia, South Africa and South America and on fingerstick blood from 50 newly recruited participants per site. The MBT test will then be locked down and validated in Phase 2 on 250 participants per site. DISCUSSION: By targeting confirmatory TB testing to those with a positive triage test, 75% of negative GXPU may be avoided, thereby reducing diagnostic costs and patient losses during the care cascade. This study builds on previous biomarker research and aims to identify a point-of-care test meeting or exceeding the minimum World Health Organisation target product profile of a 90% sensitivity and 70% specificity. Streamlining TB testing by identifying individuals with a high likelihood of TB should improve TB resources use and, in so doing, improve TB care. TRIAL REGISTRATION: NCT04232618 (clinicaltrials.gov) Date of registration: 16 January 2020.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Triagem , Tuberculose/diagnóstico , Testes Imediatos , Sensibilidade e Especificidade , Biomarcadores
19.
J Infect Dis ; 225(9): 1653-1662, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33104201

RESUMO

BACKGROUND: Helminth infections may modulate the inflammatory response to Mycobacterium tuberculosis and influence disease presentation and outcome. Strongyloides stercoralis is common among populations with high tuberculosis prevalence. Our aim was to determine whether S. stercoralis coinfection influenced clinical presentation, cerebrospinal fluid (CSF) inflammation, and outcome from tuberculous meningitis (TBM). METHODS: From June 2017 to December 2019, 668 Vietnamese adults with TBM, enrolled in the ACT HIV or LAST ACT trials (NCT03092817 and NCT03100786), underwent pretreatment S. stercoralis testing by serology, stool microscopy, and/or stool polymerase chain reaction. Comparisons of pretreatment TBM severity, CSF inflammation (including cytokines), and 3-month clinical end points were performed in groups with or without active S. stercoralis infection. RESULTS: Overall, 9.4% participants (63 of 668) tested positive for S. stercoralis. Active S. stercoralis infection was significantly associated with reduced pretreatment CSF neutrophil counts (median [interquartile range], 3/µL [0-25/µL] vs 14 /µL [1-83/µL]; P = .04), and with reduced CSF interferon É£, interleukin 2, and tumor necrosis factor α concentrations (11.4 vs 56.0 pg/mL [P = .01], 33.1 vs 54.5 pg/mL [P = .03], and 4.5 vs 11.9 pg/mL [P = .02], respectively), compared with uninfected participants. Neurological complications by 3 months were significantly reduced in participants with active S. stercoralis infection compared with uninfected participants (3.8% [1 of 26] vs 30.0% [33 of 110], respectively; P = .01). CONCLUSIONS: S. stercoralis coinfection may modulate the intracerebral inflammatory response to M. tuberculosis and improve TBM clinical outcomes.


Assuntos
Coinfecção , Mycobacterium tuberculosis , Strongyloides stercoralis , Tuberculose Meníngea , Adulto , Animais , Coinfecção/complicações , Humanos , Inflamação/complicações , Tuberculose Meníngea/complicações
20.
Clin Infect Dis ; 74(12): 2136-2141, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34550342

RESUMO

BACKGROUND: The development of a fast and accurate, non-sputum-based point-of-care triage test for tuberculosis (TB) would have a major impact on combating the TB burden worldwide. A new fingerstick blood test has been developed by Cepheid (the Xpert MTB Host Response [MTB-HR] prototype), which generates a "TB score" based on messenger RNA (mRNA) expression of 3 genes. Here we describe the first prospective findings of the MTB-HR prototype. METHODS: Fingerstick blood from adults presenting with symptoms compatible with TB in South Africa, The Gambia, Uganda, and Vietnam was analyzed using the Cepheid GeneXpert MTB-HR prototype. Accuracy of the Xpert MTB-HR cartridge was determined in relation to GeneXpert Ultra results and a composite microbiological score (GeneXpert Ultra and liquid culture) with patients classified as having TB or other respiratory diseases (ORD). RESULTS: When data from all sites (n = 75 TB, 120 ORD) were analyzed, the TB score discriminated between TB and ORD with an area under the curve (AUC) of 0.94 (95% confidence interval [CI], .91-.97), sensitivity of 87% (95% CI, 77-93%) and specificity of 94% (88-97%). When sensitivity was set at 90% for a triage test, specificity was 86% (95% CI, 75-97%). These results were not influenced by human immunodeficiency virus (HIV) status or geographical location. When evaluated against a composite microbiological score (n = 80 TB, 111 ORD), the TB score was able to discriminate between TB and ORD with an AUC of 0.88 (95% CI, .83-.94), 80% sensitivity (95% CI, 76-85%) and 94% specificity (95% CI, 91-96%). CONCLUSIONS: Our interim data indicate the Cepheid MTB-HR cartridge reaches the minimal target product profile for a point of care triage test for TB using fingerstick blood, regardless of geographic area or HIV infection status.


Assuntos
Infecções por HIV , Mycobacterium tuberculosis , Tuberculose , Adulto , Infecções por HIV/diagnóstico , Testes Hematológicos , Humanos , Mycobacterium tuberculosis/genética , Estudos Prospectivos , Sensibilidade e Especificidade , Tuberculose/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA