Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(3): 73, 2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36842139

RESUMO

Barrier-to-autointegration factor (BAF/BANF) is a nuclear lamina protein essential for nuclear integrity, chromatin structure, and genome stability. Whereas complete loss of BAF causes lethality in multiple organisms, the A12T missense mutation of the BANF1 gene in humans causes a premature aging syndrome, called Néstor-Guillermo Progeria Syndrome (NGPS). Here, we report the first in vivo animal investigation of progeroid BAF, using CRISPR editing to introduce the NGPS mutation into the endogenous Drosophila baf gene. Progeroid BAF adults are born at expected frequencies, demonstrating that this BAF variant retains some function. However, tissue homeostasis is affected, supported by studies of the ovary, a tissue that depends upon BAF for stem cell survival and continuous oocyte production. We find that progeroid BAF causes defects in germline stem cell mitosis that delay anaphase progression and compromise chromosome segregation. We link these defects to decreased recruitment of centromeric proteins of the kinetochore, indicating dysfunction of cenBAF, a localized pool of dephosphorylated BAF produced by Protein Phosphatase PP4. We show that DNA damage increases in progenitor germ cells, which causes germ cell death due to activation of the DNA damage transducer kinase Chk2. Mitotic defects appear widespread, as aberrant chromosome segregation and increased apoptosis occur in another tissue. Together, these data highlight the importance of BAF in establishing centromeric structures critical for mitosis. Further, these studies link defects in cenBAF function to activation of a checkpoint that depletes progenitor reserves critical for tissue homeostasis, aligning with phenotypes of NGPS patients.


Assuntos
Drosophila , Progéria , Animais , Feminino , Humanos , Drosophila/metabolismo , Progéria/genética , Progéria/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/metabolismo , Centrômero/metabolismo , Homeostase/genética
2.
Sci Rep ; 10(1): 14116, 2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32839514

RESUMO

Studies have demonstrated that environmental, host genetic, and socioeconomic factors influence the breast cancer prevalence landscape with a far-reaching influence on racial disparity to subtypes of breast cancer. To understand whether breast tissue harbors race-specific microbiota, we performed 16S rRNA gene-based sequencing of retrospective tumor and matched normal tissue adjacent to tumor (NAT) samples collected from Black non-Hispanic (BNH) and White non-Hispanic (WNH) women. Analysis of Triple Negative Breast cancer (TNBC) and Triple Positive Breast Cancer (TPBC) tissues for microbiota composition revealed significant differences in relative abundance of specific taxa at both phylum and genus levels between WNH and BNH women cohorts. Our main findings are that microbial diversity as measured by Shannon index was significantly lower in BNH TNBC tumor tissue as compared to matched NAT zone. In contrast, the WNH cohort had an inverse pattern for the Shannon index, when TNBC tumor tissue was compared to the matched NAT. Unweighted Principle Coordinates Analysis (PCoA) revealed a distinct clustering of tumor and NAT microbiota in both BNH and WNH cohorts.


Assuntos
Negro ou Afro-Americano/estatística & dados numéricos , Etnicidade/estatística & dados numéricos , Microbiota/genética , Neoplasias de Mama Triplo Negativas , População Branca/estatística & dados numéricos , Adulto , Idoso , Biodiversidade , Feminino , Hispânico ou Latino , Humanos , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Receptor ErbB-2/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Progesterona/metabolismo , Estudos Retrospectivos , Neoplasias de Mama Triplo Negativas/epidemiologia , Neoplasias de Mama Triplo Negativas/etnologia , Neoplasias de Mama Triplo Negativas/microbiologia
3.
Front Genet ; 11: 903, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973872

RESUMO

Social epigenomics has emerged as an integrative field of research focused on identification of socio-environmental factors, their influence on human biology through epigenomic modifications, and how they contribute to current health disparities. Several health disparities studies have been published using genetic-based approaches; however, increasing accessibility and affordability of molecular technologies have allowed for an in-depth investigation of the influence of external factors on epigenetic modifications (e.g., DNA methylation, micro-RNA expression). Currently, research is focused on epigenetic changes in response to environment, as well as targeted epigenetic therapies and environmental/social strategies for potentially minimizing certain health disparities. Here, we will review recent findings in this field pertaining to conditions and diseases over life span encompassing prenatal to adult stages.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA