Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 583(7814): 96-102, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581362

RESUMO

Most patients with rare diseases do not receive a molecular diagnosis and the aetiological variants and causative genes for more than half such disorders remain to be discovered1. Here we used whole-genome sequencing (WGS) in a national health system to streamline diagnosis and to discover unknown aetiological variants in the coding and non-coding regions of the genome. We generated WGS data for 13,037 participants, of whom 9,802 had a rare disease, and provided a genetic diagnosis to 1,138 of the 7,065 extensively phenotyped participants. We identified 95 Mendelian associations between genes and rare diseases, of which 11 have been discovered since 2015 and at least 79 are confirmed to be aetiological. By generating WGS data of UK Biobank participants2, we found that rare alleles can explain the presence of some individuals in the tails of a quantitative trait for red blood cells. Finally, we identified four novel non-coding variants that cause disease through the disruption of transcription of ARPC1B, GATA1, LRBA and MPL. Our study demonstrates a synergy by using WGS for diagnosis and aetiological discovery in routine healthcare.


Assuntos
Internacionalidade , Programas Nacionais de Saúde , Doenças Raras/diagnóstico , Doenças Raras/genética , Sequenciamento Completo do Genoma , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Alelos , Bases de Dados Factuais , Eritrócitos/metabolismo , Fator de Transcrição GATA1/genética , Humanos , Fenótipo , Locos de Características Quantitativas , Receptores de Trombopoetina/genética , Medicina Estatal , Reino Unido
2.
Blood ; 141(18): 2261-2274, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-36790527

RESUMO

Pathogenic missense variants in SLFN14, which encode an RNA endoribonuclease protein that regulates ribosomal RNA (rRNA) degradation, are known to cause inherited thrombocytopenia (TP) with impaired platelet aggregation and adenosine triphosphate secretion. Despite mild laboratory defects, the patients displayed an obvious bleeding phenotype. However, the function of SLFN14 in megakaryocyte (MK) and platelet biology remains unknown. This study aimed to model the disease in an immortalized MK cell line (imMKCL) and to characterize the platelet transcriptome in patients with the SLFN14 K219N variant. MK derived from heterozygous and homozygous SLFN14 K219N imMKCL and stem cells of blood from patients mainly presented with a defect in proplatelet formation and mitochondrial organization. SLFN14-defective platelets and mature MK showed signs of rRNA degradation; however, this was absent in undifferentiated imMKCL cells and granulocytes. Total platelet RNA was sequenced in 2 patients and 19 healthy controls. Differential gene expression analysis yielded 2999 and 2888 significantly (|log2 fold change| >1, false discovery rate <0.05) up- and downregulated genes, respectively. Remarkably, these downregulated genes were not enriched in any biological pathway, whereas upregulated genes were enriched in pathways involved in (mitochondrial) translation and transcription, with a significant upregulation of 134 ribosomal protein genes (RPGs). The upregulation of mitochondrial RPGs through increased mammalian target of rapamycin complex 1 (mTORC1) signaling in SLFN14 K219N MK seems to be a compensatory response to rRNA degradation. mTORC1 inhibition with rapamycin resulted in further enhanced rRNA degradation in SLFN14 K219N MK. Taken together, our study indicates dysregulation of mTORC1 coordinated ribosomal biogenesis is the disease mechanism for SLFN14-related TP.


Assuntos
Trombocitopenia , Humanos , Trombocitopenia/patologia , Plaquetas/metabolismo , Ribossomos/metabolismo , Megacariócitos/patologia , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , RNA/metabolismo
3.
Hum Mol Genet ; 29(20): 3431-3442, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33075815

RESUMO

We describe a lethal combined nervous and reproductive systems disease in three affected siblings of a consanguineous family. The phenotype was characterized by visceroautonomic dysfunction (neonatal bradycardia/apnea, feeding problems, hyperactive startle reflex), severe postnatal progressive neurological abnormalities (including abnormal neonatal cry, hypotonia, epilepsy, polyneuropathy, cerebral gray matter atrophy), visual impairment, testicular dysgenesis in males and sudden death at infant age by brainstem-mediated cardiorespiratory arrest. Whole-exome sequencing revealed a novel homozygous frameshift variant p.Val242GlufsTer52 in the TSPY-like 1 gene (TSPYL1). The truncated TSPYL1 protein that lacks the nucleosome assembly protein domain was retained in the Golgi of fibroblasts from the three patients, whereas control fibroblasts express full-length TSPYL1 in the nucleus. Proteomic analysis of nuclear extracts from fibroblasts identified 24 upregulated and 20 downregulated proteins in the patients compared with 5 controls with 'regulation of cell cycle' as the highest scored biological pathway affected. TSPYL1-deficient cells had prolonged S and G2 phases with reduced cellular proliferation rates. Tspyl1 depletion in zebrafish mimicked the patients' phenotype with early lethality, defects in neurogenesis and cardiac dilation. In conclusion, this study reports the third pedigree with recessive TSPYL1 variants, confirming that TSPYL1 deficiency leads to a combined nervous and reproductive systems disease, and provides for the first time insights into the disease mechanism.


Assuntos
Fibroblastos/patologia , Mutação da Fase de Leitura , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteoma/análise , Morte Súbita do Lactente/patologia , Animais , Feminino , Fibroblastos/metabolismo , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem , Fenótipo , Morte Súbita do Lactente/genética , Sequenciamento do Exoma , Peixe-Zebra
4.
Blood ; 134(23): 2082-2091, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31064749

RESUMO

A targeted high-throughput sequencing (HTS) panel test for clinical diagnostics requires careful consideration of the inclusion of appropriate diagnostic-grade genes, the ability to detect multiple types of genomic variation with high levels of analytic sensitivity and reproducibility, and variant interpretation by a multidisciplinary team (MDT) in the context of the clinical phenotype. We have sequenced 2396 index patients using the ThromboGenomics HTS panel test of diagnostic-grade genes known to harbor variants associated with rare bleeding, thrombotic, or platelet disorders (BTPDs). The molecular diagnostic rate was determined by the clinical phenotype, with an overall rate of 49.2% for all thrombotic, coagulation, platelet count, and function disorder patients and a rate of 3.2% for patients with unexplained bleeding disorders characterized by normal hemostasis test results. The MDT classified 745 unique variants, including copy number variants (CNVs) and intronic variants, as pathogenic, likely pathogenic, or variants of uncertain significance. Half of these variants (50.9%) are novel and 41 unique variants were identified in 7 genes recently found to be implicated in BTPDs. Inspection of canonical hemostasis pathways identified 29 patients with evidence of oligogenic inheritance. A molecular diagnosis has been reported for 894 index patients providing evidence that introducing an HTS genetic test is a valuable addition to laboratory diagnostics in patients with a high likelihood of having an inherited BTPD.


Assuntos
Transtornos Plaquetários , Hemorragia , Sequenciamento de Nucleotídeos em Larga Escala , Trombose , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/genética , Feminino , Dosagem de Genes , Hemorragia/diagnóstico , Hemorragia/genética , Hemostasia/genética , Humanos , Masculino , Trombose/diagnóstico , Trombose/genética
5.
Blood ; 134(23): 2070-2081, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31217188

RESUMO

To identify novel causes of hereditary thrombocytopenia, we performed a genetic association analysis of whole-genome sequencing data from 13 037 individuals enrolled in the National Institute for Health Research (NIHR) BioResource, including 233 cases with isolated thrombocytopenia. We found an association between rare variants in the transcription factor-encoding gene IKZF5 and thrombocytopenia. We report 5 causal missense variants in or near IKZF5 zinc fingers, of which 2 occurred de novo and 3 co-segregated in 3 pedigrees. A canonical DNA-zinc finger binding model predicts that 3 of the variants alter DNA recognition. Expression studies showed that chromatin binding was disrupted in mutant compared with wild-type IKZF5, and electron microscopy revealed a reduced quantity of α granules in normally sized platelets. Proplatelet formation was reduced in megakaryocytes from 7 cases relative to 6 controls. Comparison of RNA-sequencing data from platelets, monocytes, neutrophils, and CD4+ T cells from 3 cases and 14 healthy controls showed 1194 differentially expressed genes in platelets but only 4 differentially expressed genes in each of the other blood cell types. In conclusion, IKZF5 is a novel transcriptional regulator of megakaryopoiesis and the eighth transcription factor associated with dominant thrombocytopenia in humans.


Assuntos
Plaquetas , Doenças Genéticas Inatas , Mutação em Linhagem Germinativa , Fator de Transcrição Ikaros , Mutação de Sentido Incorreto , Trombocitopenia , Trombopoese/genética , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Cromatina/genética , Cromatina/metabolismo , Cromatina/ultraestrutura , Grânulos Citoplasmáticos/genética , Grânulos Citoplasmáticos/metabolismo , Grânulos Citoplasmáticos/ultraestrutura , Feminino , Regulação da Expressão Gênica , Doenças Genéticas Inatas/genética , Doenças Genéticas Inatas/metabolismo , Doenças Genéticas Inatas/patologia , Células HEK293 , Humanos , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Masculino , Trombocitopenia/genética , Trombocitopenia/metabolismo , Trombocitopenia/patologia
6.
Haematologica ; 104(5): 1036-1045, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30467204

RESUMO

Sphingolipids are fundamental to membrane trafficking, apoptosis, and cell differentiation and proliferation. KDSR or 3-keto-dihydrosphingosine reductase is an essential enzyme for de novo sphingolipid synthesis, and pathogenic mutations in KDSR result in the severe skin disorder erythrokeratodermia variabilis et progressiva-4 Four of the eight reported cases also had thrombocytopenia but the underlying mechanism has remained unexplored. Here we expand upon the phenotypic spectrum of KDSR deficiency with studies in two siblings with novel compound heterozygous variants associated with thrombocytopenia, anemia, and minimal skin involvement. We report a novel phenotype of progressive juvenile myelofibrosis in the propositus, with spontaneous recovery of anemia and thrombocytopenia in the first decade of life. Examination of bone marrow biopsies showed megakaryocyte hyperproliferation and dysplasia. Megakaryocytes obtained by culture of CD34+ stem cells confirmed hyperproliferation and showed reduced proplatelet formation. The effect of KDSR insufficiency on the sphingolipid profile was unknown, and was explored in vivo and in vitro by a broad metabolomics screen that indicated activation of an in vivo compensatory pathway that leads to normalization of downstream metabolites such as ceramide. Differentiation of propositus-derived induced pluripotent stem cells to megakaryocytes followed by expression of functional KDSR showed correction of the aberrant cellular and biochemical phenotypes, corroborating the critical role of KDSR in proplatelet formation. Finally, Kdsr depletion in zebrafish recapitulated the thrombocytopenia and showed biochemical changes similar to those observed in the affected siblings. These studies support an important role for sphingolipids as regulators of cytoskeletal organization during megakaryopoiesis and proplatelet formation.


Assuntos
Oxirredutases do Álcool/deficiência , Plaquetas/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Megacariócitos/patologia , Esfingolipídeos/metabolismo , Trombocitopenia/etiologia , Oxirredutases do Álcool/genética , Animais , Plaquetas/metabolismo , Diferenciação Celular , Células Cultivadas , Criança , Feminino , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Masculino , Megacariócitos/metabolismo , Metabolômica , Mutação , Linhagem , Prognóstico , Trombocitopenia/metabolismo , Trombocitopenia/patologia , Peixe-Zebra
7.
Platelets ; 30(7): 931-934, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31204551

RESUMO

A germline heterozygous gain-of-function p.E527K variant in tyrosine kinase SRC was previously found to cause thrombocytopenia, myelofibrosis, bleeding, bone pathologies, premature edentulism and mild facial dysmorphia in nine patients of a single pedigree. Because of this variant, SRC loses its self-inhibitory capacity, causing constitutively active SRC expression in platelets. These patients have fewer and heterogeneous-sized platelets that are hyporeactive to collagen. We now report a 5-year-old girl with syndromic thrombocytopenia due to the same SRC-E527K variant that occurs de novo. A bone marrow biopsy, blood smear analysis, platelet aggregations, flow cytometric analysis of P-selectin, SRC expression and tyrosine phosphorylation studies were performed to confirm the similarities between the two families. This study strengthens our previous finding that hyperactive SRC kinase results in mild platelet dysfunction and thrombocytopenia with hypogranular platelets and further expands the clinical description of this syndrome to improve early recognition.


Assuntos
Trombocitopenia/metabolismo , Quinases da Família src/metabolismo , Pré-Escolar , Feminino , Humanos
8.
J Allergy Clin Immunol ; 142(2): 630-646, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29391254

RESUMO

BACKGROUND: Roifman syndrome is a rare inherited disorder characterized by spondyloepiphyseal dysplasia, growth retardation, cognitive delay, hypogammaglobulinemia, and, in some patients, thrombocytopenia. Compound heterozygous variants in the small nuclear RNA gene RNU4ATAC, which is necessary for U12-type intron splicing, were identified recently as driving Roifman syndrome. OBJECTIVE: We studied 3 patients from 2 unrelated kindreds harboring compound heterozygous or homozygous stem II variants in RNU4ATAC to gain insight into the mechanisms behind this disorder. METHODS: We systematically profiled the immunologic and hematologic compartments of the 3 patients with Roifman syndrome and performed RNA sequencing to unravel important splicing defects in both cell lineages. RESULTS: The patients exhibited a dramatic reduction in B-cell numbers, with differentiation halted at the transitional B-cell stage. Despite abundant B-cell activating factor availability, development past this B-cell activating factor-dependent stage was crippled, with disturbed minor splicing of the critical mitogen-activated protein kinase 1 signaling component. In the hematologic compartment patients with Roifman syndrome demonstrated defects in megakaryocyte differentiation, with inadequate generation of proplatelets. Platelets from patients with Roifman syndrome were rounder, with increased tubulin and actin levels, and contained increased α-granule and dense granule markers. Significant minor intron retention in 354 megakaryocyte genes was observed, including DIAPH1 and HPS1, genes known to regulate platelet and dense granule formation, respectively. CONCLUSION: Together, our results provide novel molecular and cellular data toward understanding the immunologic and hematologic features of Roifman syndrome.


Assuntos
Linfócitos B/fisiologia , Plaquetas/fisiologia , Cardiomiopatias/genética , Síndromes de Imunodeficiência/genética , Megacariócitos/fisiologia , Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína Quinase 1 Ativada por Mitógeno/genética , Osteocondrodisplasias/genética , Células Precursoras de Linfócitos B/fisiologia , RNA Nuclear Pequeno/genética , Doenças Retinianas/genética , Adolescente , Diferenciação Celular , Linhagem da Célula , Proliferação de Células , Células Cultivadas , Criança , Pré-Escolar , Humanos , Lactente , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Linhagem , Doenças da Imunodeficiência Primária , Processamento de Proteína/genética , Transdução de Sinais/genética , Sequenciamento do Exoma
9.
Blood ; 127(23): 2903-14, 2016 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-26912466

RESUMO

Macrothrombocytopenia (MTP) is a heterogeneous group of disorders characterized by enlarged and reduced numbers of circulating platelets, sometimes resulting in abnormal bleeding. In most MTP, this phenotype arises because of altered regulation of platelet formation from megakaryocytes (MKs). We report the identification of DIAPH1, which encodes the Rho-effector diaphanous-related formin 1 (DIAPH1), as a candidate gene for MTP using exome sequencing, ontological phenotyping, and similarity regression. We describe 2 unrelated pedigrees with MTP and sensorineural hearing loss that segregate with a DIAPH1 R1213* variant predicting partial truncation of the DIAPH1 diaphanous autoregulatory domain. The R1213* variant was linked to reduced proplatelet formation from cultured MKs, cell clustering, and abnormal cortical filamentous actin. Similarly, in platelets, there was increased filamentous actin and stable microtubules, indicating constitutive activation of DIAPH1. Overexpression of DIAPH1 R1213* in cells reproduced the cytoskeletal alterations found in platelets. Our description of a novel disorder of platelet formation and hearing loss extends the repertoire of DIAPH1-related disease and provides new insight into the autoregulation of DIAPH1 activity.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Perda Auditiva/genética , Mutação , Trombocitopenia/genética , Células A549 , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Criança , Feminino , Forminas , Estudos de Associação Genética , Predisposição Genética para Doença , Células HEK293 , Perda Auditiva/complicações , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Polimorfismo de Nucleotídeo Único , Síndrome , Trombocitopenia/complicações , Adulto Jovem
10.
Haematologica ; 102(4): 695-706, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28082341

RESUMO

Gray platelet syndrome is named after the gray appearance of platelets due to the absence of α-granules. It is caused by recessive mutations in NBEAL2, resulting in macrothrombocytopenia and myelofibrosis. Though using the term gray platelets for GATA1 deficiency has been debated, a reduced number of α-granules has been described for macrothrombocytopenia due to GATA1 mutations. We compared platelet size and number of α-granules for two NBEAL2 and two GATA1-deficient patients and found reduced numbers of α-granules for all, with the defect being more pronounced for NBEAL2 deficiency. We further hypothesized that the granule defect for GATA1 is due to a defective control of NBEAL2 expression. Remarkably, platelets from two patients, and Gata1-deficient mice, expressed almost no NBEAL2. The differentiation of GATA1 patient-derived CD34+ stem cells to megakaryocytes showed defective proplatelet and α-granule formation with strongly reduced NBEAL2 protein and ribonucleic acid expression. Chromatin immunoprecipitation sequencing revealed 5 GATA binding sites in a regulatory region 31 kb upstream of NBEAL2 covered by a H3K4Me1 mark indicative of an enhancer locus. Luciferase reporter constructs containing this region confirmed its enhancer activity in K562 cells, and mutagenesis of the GATA1 binding sites resulted in significantly reduced enhancer activity. Moreover, DNA binding studies showed that GATA1 and GATA2 physically interact with this enhancer region. GATA1 depletion using small interfering ribonucleic acid in K562 cells also resulted in reduced NBEAL2 expression. In conclusion, we herein show a long-distance regulatory region with GATA1 binding sites as being a strong enhancer for NBEAL2 expression.


Assuntos
Proteínas Sanguíneas/genética , Elementos Facilitadores Genéticos , Fator de Transcrição GATA1/metabolismo , Regulação da Expressão Gênica , Alelos , Plaquetas/metabolismo , Diferenciação Celular/genética , Fator de Transcrição GATA1/deficiência , Fator de Transcrição GATA1/genética , Expressão Gênica , Genes Recessivos , Genes Reporter , Genes Ligados ao Cromossomo X , Estudos de Associação Genética , Predisposição Genética para Doença , Homozigoto , Humanos , Megacariócitos/citologia , Megacariócitos/metabolismo , Megacariócitos/ultraestrutura , Mutação , Fenótipo , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/genética , Trombocitopenia/sangue , Trombocitopenia/genética , Trombocitopenia/patologia
13.
Hum Mol Genet ; 22(1): 61-73, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23010472

RESUMO

Niemann-Pick type C is a lysosomal storage disease associated with mutations in NPC1 or NPC2, resulting in an accumulation of cholesterol in the endosomal-lysosomal system. Niemann-Pick type C has a clinical spectrum that ranges from a neonatal rapidly fatal disorder to an adult-onset chronic neurodegenerative disease combined with remarkably, in some cases, hematological defects such as thrombocytopenia, anemia and petechial rash. A role of NPC1 in hematopoiesis was never shown. Here, we describe platelet function abnormalities in three unrelated patients with a proven genetic and biochemical NPC1 defect. Their platelets have reduced aggregations, P-selectin expression and ATP secretions that are compatible with the observed abnormal alpha and reduced dense granules as studied by electron microscopy and CD63 staining after platelet spreading. Their blood counts were normal. NPC1 expression was shown in platelets and megakaryocytes (MKs). In vitro differentiated MKs from NPC1 patients exhibit hyperproliferation of immature MKs with different CD63(+) granules and abnormal cellular accumulation of cholesterol as shown by filipin stainings. The role of NPC1 in megakaryopoiesis was further studied using zebrafish with GFP-labeled thrombocytes or DsRed-labeled erythrocytes. NPC1 depletion in zebrafish resulted in increased cell death in the brain and abnormal cellular accumulation of filipin. NPC1-depleted embryos presented with thrombocytopenia and mild anemia as studied by flow cytometry and real-time QPCR for specific blood cell markers. In conclusion, this is the first report, showing a role of NPC1 in platelet function and formation but further studies are needed to define how cholesterol storage interferes with these processes.


Assuntos
Plaquetas/fisiologia , Proteínas de Transporte/fisiologia , Glicoproteínas de Membrana/fisiologia , Proteínas de Membrana/fisiologia , Doença de Niemann-Pick Tipo C/sangue , Proteínas de Peixe-Zebra/fisiologia , Animais , Proteínas de Transporte/genética , Morte Celular , Diferenciação Celular , Criança , Feminino , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Trombocitopenia/genética , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/genética
14.
Nat Med ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38821540

RESUMO

Most people with intellectual disability (ID) do not receive a molecular diagnosis following genetic testing. To identify new etiologies of ID, we performed a genetic association analysis comparing the burden of rare variants in 41,132 noncoding genes between 5,529 unrelated cases and 46,401 unrelated controls. RNU4-2, which encodes U4 small nuclear RNA, a critical component of the spliceosome, was the most strongly associated gene. We implicated de novo variants among 47 cases in two regions of RNU4-2 in the etiology of a syndrome characterized by ID, microcephaly, short stature, hypotonia, seizures and motor delay. We replicated this finding in three collections, bringing the number of unrelated cases to 73. Analysis of national genomic diagnostic data showed RNU4-2 to be a more common etiological gene for neurodevelopmental abnormality than any previously reported autosomal gene. Our findings add to the growing evidence of spliceosome dysfunction in the etiologies of neurological disorders.

15.
Genet Med ; 15(1): 55-63, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22899094

RESUMO

PURPOSE: Aquaporin 7 (AQP7) belongs to the aquaglyceroporin family, which transports glycerol and water. AQP7-deficient mice develop obesity, insulin resistance, and hyperglyceroluria. However, AQP7's pathophysiologic role in humans is not yet known. METHODS: Three children with psychomotor retardation and hyperglyceroluria were screened for AQP7 mutations. The children were from unrelated families. Urine and plasma glycerol levels were measured using a three-step enzymatic approach. Platelet morphology and function were studied using electron microscopy, aggregations, and adenosine triphosphate (ATP) secretion tests. RESULTS: The index patients were homozygous for AQP7 G264V, which has previously been shown to inhibit transport of glycerol in Xenopus oocytes. We also detected a subclinical platelet secretion defect with reduced ATP secretion, and the absence of a secondary aggregation wave after epinephrine stimulation. Electron microscopy revealed round platelets with centrally located granules. Immunostaining showed AQP7 colocalization, with dense granules that seemed to be released after strong platelet activation. Healthy relatives of these patients, who were homozygous (not heterozygous) for G264V, also had hyperglyceroluria and platelet granule abnormalities. CONCLUSION: The discovery of an association between urine glycerol loss and a platelet secretion defect is a novel one, and our findings imply the involvement of AQPs in platelet secretion. Additional studies are needed to define whether AQP7 G264V is also a risk factor for mental disability.


Assuntos
Aquaporinas/genética , Transtornos Plaquetários/genética , Homozigoto , Mutação , Adolescente , Adulto , Substituição de Aminoácidos , Aquaporina 3/genética , Aquaporinas/metabolismo , Plaquetas/metabolismo , Plaquetas/ultraestrutura , Criança , Pré-Escolar , Códon , Feminino , Glicerol/sangue , Glicerol/urina , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Linhagem , Transporte Proteico , Adulto Jovem
16.
FASEB J ; 26(5): 2125-36, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22308195

RESUMO

RGS18 was originally identified as a R4 subfamily member of regulators of G-protein signaling (RGS) with specific expression in hematopoietic progenitors, myeloerythroid cells, and megakaryocytes, though its physiological role in hematopoiesis remained unknown. Here, we show that lentiviral RGS18 overexpression during differentiation of mouse Sca1(+) hematopoietic stem cells induced a 50% increase of megakaryocyte proliferation. RGS18 depletion in zebrafish results in thrombocytopenia, as 66 to 88% of the embryos lack thrombocytes after injection of an ATG or splice-blocking morpholino, respectively. These embryos have no defects in early hematopoiesis, erythropoiesis, or leukocyte number and migration. In addition, all RGS18 depleted embryos have curly tails and an almost absent response to acoustic stimuli. In situ hybridization in zebrafish, Xenopus, and mouse embryos shows RGS18 expression in thrombocytes and/or hematological tissues but also in brain and otic vesicles. RGS18 interferes with development of cilia in hair cells of the inner ear and neuromast cells. On the basis of literature evidence that RGS-R4 members interact with the G-protein-modulated Wnt/calcium pathway, Wnt5b- but not Wnt5a-depleted embryos phenocopy all RGS18 knockdown effects. In summary, our study is the first to show that RGS18 regulates megakaryopoiesis but also reveals its unexpected role in ciliogenesis, at least in lower vertebrates, via interference with Wnt signaling.


Assuntos
Cílios/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mecanotransdução Celular , Megacariócitos/fisiologia , Animais , Sequência de Bases , Primers do DNA , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Peptídeos e Proteínas de Sinalização Intracelular/genética , Ligantes , Camundongos , Proteínas RGS , Proteínas Wnt/metabolismo
17.
J Thromb Haemost ; 21(4): 887-895, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36696193

RESUMO

BACKGROUND: The international study ThromboGenomics has evaluated the diagnostic rate using a targeted multigene panel test for the screening of inherited bleeding, thrombotic and platelet disorders. OBJECTIVES: We retrospectively analyzed the results of the implementation of genetic testing for inherited bleeding, thrombotic and platelet disorders in Belgian clinical practice and evaluated possible reclassification of reported variants. PATIENTS/METHODS: We implemented a Thrombosis-Hemostasis multigene panel test using whole exome sequencing to diagnose 487 patients recruited by 27 different Belgian hospitals with the implementation of stringent laboratory accreditation standards and by studying up to 100 diagnostic-grade genes. RESULTS: This Thrombosis-Hemostasis multigene panel test was able to detect at least one genetic variant in 58% of the 487 patients of which 50% were (likely) pathogenic variants and the others were variants of unknown significance. Polygenic variants were detected in 65 patients (13%). A multi-step workflow for results discussion by multidisciplinary team meetings and patients' recalls for segregation studies and additional laboratory testing was set up. Variants were also submitted to the GoldVariants database from the International Society on Thrombosis and Haemostasis (ISTH). The aim of these approaches is to optimize variant interpretation and to (re)classify variants of unknown significance as (likely) pathogenic or (likely) benign. CONCLUSIONS: The growing implementation of multigene panel tests in clinical diagnostics comes with difficulties in interpreting genetic results. Additional efforts are needed to continuously optimize the diagnostic outcome.


Assuntos
Transtornos Plaquetários , Trombose , Humanos , Bélgica , Estudos Retrospectivos , Hemorragia/diagnóstico , Hemorragia/genética , Transtornos Plaquetários/diagnóstico , Transtornos Plaquetários/genética , Testes Genéticos , Trombose/genética
18.
Nat Med ; 29(3): 679-688, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36928819

RESUMO

The genetic etiologies of more than half of rare diseases remain unknown. Standardized genome sequencing and phenotyping of large patient cohorts provide an opportunity for discovering the unknown etiologies, but this depends on efficient and powerful analytical methods. We built a compact database, the 'Rareservoir', containing the rare variant genotypes and phenotypes of 77,539 participants sequenced by the 100,000 Genomes Project. We then used the Bayesian genetic association method BeviMed to infer associations between genes and each of 269 rare disease classes assigned by clinicians to the participants. We identified 241 known and 19 previously unidentified associations. We validated associations with ERG, PMEPA1 and GPR156 by searching for pedigrees in other cohorts and using bioinformatic and experimental approaches. We provide evidence that (1) loss-of-function variants in the Erythroblast Transformation Specific (ETS)-family transcription factor encoding gene ERG lead to primary lymphoedema, (2) truncating variants in the last exon of transforming growth factor-ß regulator PMEPA1 result in Loeys-Dietz syndrome and (3) loss-of-function variants in GPR156 give rise to recessive congenital hearing impairment. The Rareservoir provides a lightweight, flexible and portable system for synthesizing the genetic and phenotypic data required to study rare disease cohorts with tens of thousands of participants.


Assuntos
Estudo de Associação Genômica Ampla , Doenças Raras , Humanos , Doenças Raras/genética , Teorema de Bayes , Genótipo , Estudo de Associação Genômica Ampla/métodos , Fenótipo , Proteínas de Membrana
19.
J Hum Genet ; 57(4): 277-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22277900

RESUMO

Albright's hereditary osteodystrophy (AHO) is characterized by short stature, round face, calcifications, obesity, brachydactyly and intellectual disability. AHO without hormone resistance is called pseudopseudohypoparathyroidism (PPHP), a rare clinical condition difficult to diagnose with highly variable features. PPHP is caused by paternally inherited loss-of-function mutations in the GNAS. Patients with 2q37 microdeletions or HDAC4 mutations are also defined as having an AHO-like phenotype with normal stimulatory G (Gs) function. We have studied 256 patients with AHO features but no other diagnosis. Their platelet Gs activity was determined via the aggregation-inhibition test showing Gs hypo- or hyperfuncton in 24% and 15% of the patients, respectively. Before initiating with detailed (epi)genetic GNAS studies, we here wanted to excluded copy number variants (CNVs) in GNAS as cause of AHO with a novel large-scale screening technique. Multiplex amplicon quantification (MAQ) for CNVs screening was developed for the 20q13.3 region including GNAS and potential long-range imprinting control elements such as STX16. This is the first large-scale GNAS CNV study in patients with common AHO features but no CNVs were detected. In conclusion, CNVs in the GNAS region are not likely to cause an AHO-like phenotype with or without abnormal platelet Gs activity. Future studies will be undertaken to find out whether these AHO patients with abnormal Gs function are characterized by GNAS coding or methylation defects.


Assuntos
Variações do Número de Cópias de DNA , Displasia Fibrosa Poliostótica/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Plaquetas/patologia , Cromograninas , Deleção Cromossômica , Cromossomos Humanos Par 20/genética , Epigênese Genética , Displasia Fibrosa Poliostótica/patologia , Testes Genéticos/métodos , Humanos , Fenótipo , Agregação Plaquetária , Reação em Cadeia da Polimerase/métodos , Pseudo-Hipoparatireoidismo , Sintaxina 16/genética
20.
Blood Adv ; 5(18): 3568-3580, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34546355

RESUMO

Brain-derived neurotrophic factor (BDNF) has both autocrine and paracrine roles in neurons, and its release and signaling mechanisms have been extensively studied in the central nervous system. Large quantities of BDNF have been reported in circulation, essentially stored in platelets with concentrations reaching 100- to 1000-fold those of neurons. Despite this abundance, the function of BDNF in platelet biology has not been explored. At low concentrations, BDNF primed platelets, acting synergistically with classical agonists. At high concentrations, BDNF induced complete biphasic platelet aggregation that in part relied on amplification from secondary mediators. Neurotrophin-4, but not nerve growth factor, and an activating antibody against the canonical BDNF receptor tropomyosin-related kinase B (TrkB) induced similar platelet responses to BDNF, suggesting TrkB could be the mediator. Platelets expressed, both at their surface and in their intracellular compartment, a truncated form of TrkB lacking its tyrosine kinase domain. BDNF-induced platelet aggregation was prevented by inhibitors of Ras-related C3 botulinum toxin substrate 1 (Rac1), protein kinase C, and phosphoinositide 3-kinase. BDNF-stimulated platelets secreted a panel of angiogenic and inflammatory cytokines, which may play a role in maintaining vascular homeostasis. Two families with autism spectrum disorder were found to carry rare missense variants in the BDNF gene. Platelet studies revealed defects in platelet aggregation to low concentrations of collagen, as well as reduced adenosine triphosphate secretion in response to adenosine diphosphate. In summary, circulating BDNF levels appear to regulate platelet activation, aggregation, and secretion through activation of a truncated TrkB receptor and downstream kinase-dependent signaling.


Assuntos
Transtorno do Espectro Autista , Fator Neurotrófico Derivado do Encéfalo , Humanos , Fosfatidilinositol 3-Quinases , Ativação Plaquetária , Agregação Plaquetária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA