Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Langmuir ; 39(40): 14231-14245, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37751408

RESUMO

Electric double layers (EDLs) play a key role in the electrochemical and energy storage of supercapacitors. It is important to understand the structure and properties of EDLs. In this work, quantum chemical calculations and molecular dynamics (MD) simulations are used to study the microstructure of EDLs of four different substituents of imidazolium-based bis(trifluoromethylsulfonyl)imide ionic liquids (ILs) on the Au(111) surface. It is shown that the particle interactions influence the different arrangements of the anion and cation. More alkyl substitutions and longer alkyl chains result in a higher ELUMO and thus a stronger interaction energy between cations and electrodes. Strong interactions produce linear patterns of anions/cations on the electrode and a maximum value of differential capacitance near PZC, whereas weak interactions generate worm-like patterns of anions/cations on Au(111) and a minimum value of differential capacitance near the PZC. We hold the opinion that the alkyl substitution has more effects on the EDLs. Our analysis provides a new perspective on EDLs structures at the atomic and molecular level. This study provides a good basis and guidance for further understanding the interface phenomena and characteristics of ionic liquids in electrochemical and energy device applications.

2.
Cancer Cell Int ; 21(1): 696, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34930262

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) are one of the most common types of head and neck cancer, and it is urgent to find effective treatment for advanced patients. Exploring developing and progressing mechanisms of HNSCC could provide a theoretical basis to find new therapeutic targets. METHODS: In our research, we performed a whole-gene expression profile microarray analysis to identify differential expression genes between squamous cell carcinoma cells and ΔNp63 alpha (ΔNp63α) knockdown cells. As a result, an important gene Synaptotagmin VII (SYT7) was screened out. RESULTS: SYT7 knockdown affected the proliferation, apoptosis and cell cycle of squamous cell carcinoma cells. The rescue experiment in vitro with ΔNp63α and SYT7 double knockdown resulted in partial reversion of ΔNp63α-induced phenotypes. This was also confirmed by experiments in vivo. CONCLUSIONS: Taken together, we found that ΔNp63α could inhibit the occurrence and progression of HNSCC throughout downregulating the expression of SYT7. Therefore, SYT7/ΔNp63α axis could be a potential therapeutic target for clinical treatment of HNSCC.

3.
Cancer Cell Int ; 21(1): 413, 2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34362389

RESUMO

BACKGROUND: Increasing evidence has demonstrated the critical roles of mRNA modification regulators on multiple types of cancers. However, it is still poorly known about the prognostic and therapeutic value of mRNA modification regulators in HNSCC. METHODS: The gene expression profile of 36 mRNA modification regulators and their corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO). Stepwise regression in R with both directions was used to construct a model for the prognosis of HNSCC. Univariate Cox regression survival analysis was performed to identify the most significant risk gene. Gene set enrichment analysis (GSEA) was applied to determine the cancer-associated pathways with NAT10. Immunohistochemistry (IHC) staining was performed to evaluate the expression of NAT10 in formalin fixed paraffin-embedded (FFPE) samples of HNSCC. Univariate and multivariate Cox regression survival analysis performed to identify the independent risk factors associated with the OS of patients with HNSCC. HNSCC cell lines (Cal-27, FaDu, and Detroit-562) were transfected with short interfering RNA (siRNA) targeting NAT10 or treated with Remodelin, a small-molecule inhibitor of NAT10. Knockdown efficiency of siRNA was assessed by quantitative real-time PCR (qRT-PCR) and western blotting. In addition, CCK-8 assay, scratch assay and transwell assay were used to examine the proliferation, migration, and invasion abilities of the three HNSCC cell lines after NAT10 was inhibited genetically and pharmaceutically. Cell cycle and cell apoptosis assays were performed by flow cytometry. Finally, the therapeutic value of Remodelin in HNSCC was evaluated via a patient-derived xenograft (PDX) model. The statistical analysis was performed with SPSS 23.0. RESULTS: A risk prediction model containing 10 mRNA modification regulators was constructed and showed prognostic value in HNSCC. NAT10 was further identified as a key risk gene and independent prognostic factor in TCGA HNSCC dataset. The GSEA analysis suggested that high NAT10 expression was associated with MYC, E2F, G2M checkpoint, mTORC1, DNA repair and oxidative phosphorylation pathways. NAT10 protein expression was significantly up-regulated in tumour cells compared to normal epithelial cells in FFPE samples and increased NAT10 protein expression was correlated with poor overall survival of 267 HNSCC patients. Genetic depletion of NAT10 using siRNA or chemical inhibition of NAT10 using Remodelin resulted in reduced cell proliferation, migration and invasion abilities in Cal-27, FaDu and Detroit-562 cells. Knockdown of NAT10 using siRNA significantly increased cell cycle arrest in S/G2-phase. Remodelin significantly inhibited tumour growth and tumour cell proliferation in the PDX model of HNSCC. CONCLUSIONS: NAT10 could be a potential prognostic marker and a therapeutic target for HNSCC.

4.
Cancer Cell Int ; 21(1): 167, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712015

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is a common tumor worldwide with poor prognosis. The pathogenesis of human papillomavirus (HPV)-positive and HPV-negative HNSCCs differs. However, few studies have considered the HPV status when identifying biomarkers for HNSCC. Thus, the identification of biomarkers for HPV-positive and HPV-negative HNSCCs is urgently needed. METHODS: Three microarray datasets from Gene Expression Omnibus (GEO) were analyzed, and the differentially expressed genes (DEGs) were obtained. Then, functional enrichment pathway analysis was performed and protein-protein interaction (PPI) networks were constructed. The expression of hub genes at both the mRNA and protein level was determined in Oncomine, The Cancer Genome Atlas (TCGA) and the Human Protein Atlas (HPA). In addition, survival analysis of the patient stratified by HPV status and the expression levels of key genes were performed based on TCGA data. The role of AREG, STAG3, CAV1 and C19orf57 in cancer were analyzed through Gene set enrichment analysis (GSEA). The top ten small molecule drugs were identified and the therapeutic value of zonisamide, NVP-AUY922, PP-2 and fostamatinib was further evaluated in six HPV-negative HNSCC cell lines. Finally, the therapeutic value of NVP-AUY922 was tested in vivo based on three HPV-negative HNSCC models, and statistical analysis was performed. RESULTS: In total, 47 DEGs were obtained, 11 of which were identified as hub genes. Biological process analysis indicated that the hub genes were associated with the G1/S transition of the mitotic cell cycle. Survival analysis uncovered that the prognostic value of AREG, STAG3, C19orf57 and CAV1 differed between HPV-positive and HPV-negative patients. Gene set enrichment analysis (GSEA) showed the role of AREG, STAG3 and CAV1 in dysregulated pathways of tumor. Ten small molecules were identified as potential drugs specifically for HPV-positive or HPV-negative patients; three-NVP-AUY922, fostamatinib and PP-2-greatly inhibited the proliferation of six HPV-negative HNSCC cell lines in vitro, and NVP-AUY922 inhibited three HPV-negative HNSCC xenografts in vivo. CONCLUSIONS: In conclusion, AREG, STAG3, C19orf57 and CAV1 are key prognostic factors and potential therapeutic targets in HPV-negative HNSCC. NVP-AUY922, fostamatinib and PP-2 may be effective drugs for HPV-negative HNSCC.

5.
Langmuir ; 37(48): 14059-14071, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34797668

RESUMO

The microstructure of electrical double layers (EDLs) of 1-butyl-3-methylimidazolium tetrafluoroborate ([Bmim]BF4), 1-butyl-3-methylimidazoliumhexafluorophosphate ([Bmim]PF6), and 1-butyl-3-methylimidazoliumbis (trifluoromethylsulfonyl) imide ([Bmim]TFSI) were studied by quantum chemical calculation and molecular dynamics simulation. For the set of ionic liquids investigated here, we found some interesting universal laws due to differences geometry and electronic structure of anions. We show that the morphology of the three anions on the electrode surface is different due to the different geometric structure. The plane formed by the bottom three atoms of the symmetrically tetrahedral BF4- and the bottom atom of the symmetrically octahedral PF6- face the electrode whether the electrode is charged or not, while the conformation of twisted V-shaped TFSI- changes with different surface charges on the electrode. Meanwhile, we also demonstrate that the energy of highest occupied molecular orbital (EHOMO), the energy of lowest unoccupied molecular orbital (ELUMO) and their energies gap (ΔE) are very interesting due to different electronic structure of anions. Specially, the EHOMO, ELUMO, and ΔE were related to the electronegativity of the central atom in the case of the same symmetry on the neutral surface. The more electronegative the central atom is, the lower EHOMO, ELUMO and higher ΔE values are. However, on the charged surface, the interaction between anion and electrode is opposite to ΔE. Moreover, different arrangements of anion and cation are related to the interaction between particles. The stronger interaction leads a double-row structure and the weak interaction lead worm-like and island patterns on Au (100) surface. In general, we observed that the higher ΔE cause stronger interaction, which lead to different patterns on Au (100) surface. Meanwhile, we also confirmed that the stronger interaction between particles and electrode lead to the thinner effective EDL and a large differential capacitance value. These results provide a new perspective for double-layer structure in atomic and molecular level. This is helpful to deepen the understanding of the interface phenomena and characteristics of [Bmim]BF4, [Bmim]PF6, and [Bmim]TFSI on Au (100) system and provide theoretical basis for the application of these kind of systems.

6.
Molecules ; 26(16)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34443504

RESUMO

The addition of corrosion inhibitors is an economic and environmental protection method to prevent the corrosion of copper. The adsorption, performance, and mechanism of three 1-alkyl-3-methylimidazolium hydrogen sulfate ([BMIM]HSO4, [HMIM]HSO4, and [OMIM]HSO4) ionic liquids (ILs) on the copper surface in 0.5 M H2SO4 solutions were studied by quantum chemical calculation, quantitative structure-activity relationship (QSAR), and molecular dynamics simulation. It is found that the main reactive site is located on the imidazolium ring (especially the C2, N4, and N7 groups). When the alkyl chain of the imidazolium ring is increasing, the molecular reactivity of the ILs and the interaction between the ILs inhibitor and copper surface are enhanced. The imidazole ring of the ILs tends to be adsorbed on Cu (111) surface in parallel through physical adsorption. The order of adsorption energy is [Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4, which is in agreement with the experimental order of corrosion efficiency. On the imidazole ring, the interaction between the copper surface and the C atom is greater than that between the copper surface and the N atom. It is found that ILs addition can hinder the diffusion of corrosion particles, reduce the number density of corrosion particles and slow down the corrosion rate. The order of inhibition ability of three ILs is [Bmim]HSO4 < [Hmim]HSO4 < [OMIM]HSO4,which agree well with experimental results. A reliable QSAR correlation between the inhibition corrosion efficiency and molecular reactivity parameters of the ILs was established.

7.
Langmuir ; 33(28): 7036-7042, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28648073

RESUMO

Interactions of molecules with the surface of TiO2 particles are of fundamental and technological importance. One example is that the adsorption density and energy of the dye molecules on TiO2 particles affect the efficiency of dye-sensitized solar cells (DSSC). In this work, we present measurements characterizing the adsorption of the two isomers, para-ethyl red (p-ER) and ortho-ethyl red (o-ER), of a dye molecule potentially applicable for DSSC onto TiO2 particles by second harmonic scattering (SHS). It is found that while at the wavelengths used here o-ER has a much bigger molecular hyperpolarizability, p-ER exhibits strong SHS responses but o-ER gives no detectable SHS when the dyes are added to the TiO2 colloids, respectively. This observation indicates that o-ER does not adsorb onto TiO2, likely due to steric hindrance. Furthermore, we investigate how solvents affect the surface adsorption strength and density of p-ER onto TiO2 in four aprotic solvents with varying polarity. The absolute magnitude of the adsorption free energy was found to increase with the specific solvation energy that represents the ability of accepting electrons and solvent polarity. It is likely that resolvation of the solvent molecules displaced by the adsorption of the dye molecule at the surface in stronger electron-accepting and more polar solvents results in a larger adsorption free energy for the dye adsorption.

8.
Phys Chem Chem Phys ; 19(32): 21707-21713, 2017 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-28776618

RESUMO

Recently, Tao and Mo proposed a meta-generalized gradient approximation for the exchange-correlation energy with remarkable accuracy for molecules, solids, and surfaces. To better understand this functional, in this work, we make a comparative study of the TM and TMTPSS functionals, the latter of which is a combination of the TM exchange with the original TPSS correlation functional, on atoms, molecules, and hydrogen-bonded complexes by the use of eight well-known databases. Our calculations show that, while the TMTPSS functional achieves better accuracy for atomization energies or enthalpies of formation, harmonic vibrational frequencies, and atomic excitation energies than the TM functional, it is less accurate for proton affinities, molecular bond lengths, and in particular hydrogen-bonded complexes.

9.
J Chem Phys ; 146(23): 234102, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28641440

RESUMO

Excitation energy plays an important role in energy conversion, biological processes, and optical devices. In this work, we apply the Tao-Mo (TM) nonempirical meta-generalized gradient approximation and the combination TMTPSS (TMx + TPSSc), with TPSSc being the correlation part of the original TPSS (Tao-Perdew-Staroverov-Scuseria) to study excitation energies of small molecules and oligomers. Our test set consists of 17 molecules with 134 total excited states, including singlet, triplet, valence, and Rydberg excited states. Our calculation shows that both the TMTPSS and TM functionals yield good overall performance, with mean absolute errors (MAEs) of 0.37 eV and 0.42 eV, respectively, outperforming commonly used semilocal functionals LSDA (MAE = 0.55 eV), PBE (MAE = 0.58 eV), and TPSS (MAE = 0.47 eV). In particular, TMTPSS can yield nearly the same accuracy of B3LYP (MAE = 0.36 eV), with lower computational cost. The accuracy for semilocal density functional theory continues to hold for conjugated oligomers, but they become less accurate than hybrid functionals, due to the insufficient nonlocality.

11.
J Chem Phys ; 145(23): 234306, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28010100

RESUMO

Recently, Tao and Mo derived a meta-generalized gradient approximation functional based on a model exchange-correlation hole. In this work, the performance of this functional is assessed on standard test sets, using the 6-311++G(3df,3pd) basis set. These test sets include 223 G3/99 enthalpies of formation, 99 atomization energies, 76 barrier heights, 58 electron affinities, 8 proton affinities, 96 bond lengths, 82 harmonic vibrational frequencies, 10 hydrogen-bonded molecular complexes, and 22 atomic excitation energies. Our calculations show that the Tao-Mo functional can achieve high accuracy for most properties considered, relative to the local spin-density approximation, Perdew-Burke-Ernzerhof, and Tao-Perdew-Staroverov-Scuseria functionals. In particular, it yields the best accuracy for proton affinities, harmonic vibrational frequencies, hydrogen-bond dissociation energies and bond lengths, and atomic excitation energies.

12.
Int J Oral Sci ; 16(1): 27, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548721

RESUMO

Uncovering the risk factors of pulmonary hypertension and its mechanisms is crucial for the prevention and treatment of the disease. In the current study, we showed that experimental periodontitis, which was established by ligation of molars followed by orally smearing subgingival plaques from patients with periodontitis, exacerbated hypoxia-induced pulmonary hypertension in mice. Mechanistically, periodontitis dysregulated the pulmonary microbiota by promoting ectopic colonization and enrichment of oral bacteria in the lungs, contributing to pulmonary infiltration of interferon gamma positive (IFNγ+) T cells and aggravating the progression of pulmonary hypertension. In addition, we identified Prevotella zoogleoformans as the critical periodontitis-associated bacterium driving the exacerbation of pulmonary hypertension by periodontitis, and the exacerbation was potently ameliorated by both cervical lymph node excision and IFNγ neutralizing antibodies. Our study suggests a proof of concept that the combined prevention and treatment of periodontitis and pulmonary hypertension are necessary.


Assuntos
Placa Dentária , Hipertensão Pulmonar , Periodontite , Humanos , Camundongos , Animais , Linfócitos T/patologia , Bactérias , Placa Dentária/microbiologia
13.
Adv Healthc Mater ; 12(20): e2203337, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36972711

RESUMO

Periodontitis and hypertension often occur as comorbidities, which need to be treated at the same time. To resolve this issue, a controlled-release composite hydrogel approach is proposed with dual antibacterial and anti-inflammatory activities as a resolution to achieve the goal of co-treatment of comorbidities. Specifically, chitosan (CS) with inherent antibacterial properties is cross-linked with antimicrobial peptide (AMP)-modified polyethylene glycol (PEG) to form a dual antibacterial hydrogel (CS-PA). Subsequently, curcumin loaded into biodegradable nanoparticles (CNP) are embedded in the hydrogel exhibiting high encapsulation efficiency and sustained release to achieve long-term anti-inflammatory activities. In a mouse model of periodontitis complicated with hypertension, CS-PA/CNP is applied to gingival sulcus and produced an optimal therapeutic effect on periodontitis and hypertension simultaneously. The therapeutic mechanisms are deeply studied and indicated that CS-PA/CNP exerted excellent immunoregulatory effects by suppressing the accumulation of lymphocytes and myeloid cells and enhanced the antioxidant capacity and thus the anti-inflammatory capacity of macrophages through the glutathione metabolism pathway. In conclusion, CS-PA/CNP has demonstrated its superior therapeutic effects and potential clinical translational value in the co-treatment of periodontitis and hypertension, and also serves as a drug delivery platform to provide combinatorial therapeutic options for periodontitis with complicated pathogenesis.


Assuntos
Quitosana , Hipertensão , Nanopartículas , Periodontite , Animais , Camundongos , Hidrogéis/uso terapêutico , Hidrogéis/química , Nanopartículas/uso terapêutico , Nanopartículas/química , Antibacterianos/química , Quitosana/química , Periodontite/tratamento farmacológico , Anti-Inflamatórios/uso terapêutico , Comorbidade , Hipertensão/tratamento farmacológico
14.
Microbiome ; 11(1): 254, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978405

RESUMO

BACKGROUND: Parkinson's disease (PD) is a common chronic neurological disorder with a high risk of disability and no cure. Periodontitis is an infectious bacterial disease occurring in periodontal supporting tissues. Studies have shown that periodontitis is closely related to PD. However, direct evidence of the effect of periodontitis on PD is lacking. Here, we demonstrated that ligature-induced periodontitis with application of subgingival plaque (LIP-SP) exacerbated motor dysfunction, microglial activation, and dopaminergic neuron loss in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mice. RESULTS: The 16S rRNA gene sequencing revealed that LIP-SP induced oral and gut dysbiosis. Particularly, Veillonella parvula (V. parvula) and Streptococcus mutans (S. mutans) from oral ligatures were increased in the fecal samples of MPTP + LIP-SP treated mice. We further demonstrated that V. parvula and S. mutans played crucial roles in LIP-SP mediated exacerbation of motor dysfunction and neurodegeneration in PD mice. V. parvula and S. mutans caused microglial activation in the brain, as well as T helper 1 (Th1) cells infiltration in the brain, cervical lymph nodes, ileum and colon in PD mice. Moreover, we observed a protective effect of IFNγ neutralization on dopaminergic neurons in V. parvula- and S. mutans-treated PD mice. CONCLUSIONS: Our study demonstrates that oral pathogens V. parvula and S. mutans necessitate the existence of periodontitis to exacerbate motor dysfunction and neurodegeneration in MPTP-induced PD mice. The underlying mechanisms include alterations of oral and gut microbiota, along with immune activation in both brain and peripheral regions. Video Abstract.


Assuntos
Doença de Parkinson , Periodontite , Camundongos , Animais , Células Th1 , RNA Ribossômico 16S/genética , Dopamina , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
15.
Artigo em Inglês | MEDLINE | ID: mdl-35165060

RESUMO

OBJECTIVE: The purpose of this study was to research the physiological roles of ubiquitin carboxyl-terminal esterase L1 (UCHL1) in head and neck squamous cell carcinoma (HNSCC). STUDY DESIGN: Ten HNSCC samples and matched normal oral mucosal tissues were collected. UCHL1 expression of these tissues was detected by the immunohistochemical staining and real-time quantitative polymerase chain reaction. The human HNSCC cell line HN6 UCHL1 knockout (UCHL1 KO) cell line was constructed using CRISPR/CAS9 gene editing and verified by western blotting. Wound healing assay, cell proliferation assay, cell invasion assay, and flow cytometric analysis of the cell cycle and apoptosis were applied to research the role of UCHL1 in HNSCC. Also, an RNAseq gene expression data set and HNSCC patient survival data from The Cancer Genome Atlas were analyzed. RESULTS: UCHL1 was highly expressed in HNSCC tissues compared with normal oral mucosal tissues (P = .032). A decreased proliferation (P < .0001), migration (P < .0001), and invasion (P = .0049) ability of HN6 cells was exhibited after knockout of UCHL1. However, HN6 UCHL1 KO cells showed no significant differences in the cell cycle or apoptosis. The progression, nodal metastasis status, and stage of HNSCC had a positive correlation with the expression of UCHL1. CONCLUSIONS: UCHL1 plays an important role in HNSCC, and we consider that targeting UCHL1 may be a feasible therapeutic strategy for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Carcinoma de Células Escamosas de Cabeça e Pescoço , Ubiquitina Tiolesterase , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/enzimologia , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/enzimologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo
16.
Signal Transduct Target Ther ; 7(1): 130, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35462576

RESUMO

Oral squamous cell carcinoma (OSCC) is the most common type of oral malignancy, and metastasis accounts for the poor prognosis of OSCC. Autophagy is considered to facilitate OSCC development by mitigating various cellular stresses; nevertheless, the mechanisms of autophagy in OSCC cell proliferation and metastasis remain unknown. In our study, high-sensitivity label-free quantitative proteomics analysis revealed nuclear protein 1 (NUPR1) as the most significantly upregulated protein in formalin-fixed paraffin-embedded tumour samples derived from OSCC patients with or without lymphatic metastasis. Moreover, NUPR1 is aberrantly expressed in the OSCC tissues and predicts low overall survival rates for OSCC patients. Notably, based on tandem mass tag-based quantitative proteomic analysis between stable NUPR1 knockdown OSCC cells and scrambled control OSCC cells, we confirmed that NUPR1 maintained autophagic flux and lysosomal functions by directly increasing transcription factor E3 (TFE3) activity, which promoted OSCC cell proliferation and metastasis in vitro and in vivo. Collectively, our data revealed that the NUPR1-TFE3 axis is a critical regulator of the autophagic machinery in OSCC progression, and this study may provide a potential therapeutic target for the treatment of OSCC.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fatores de Transcrição Hélice-Alça-Hélice Básicos , Neoplasias de Cabeça e Pescoço , Proteínas de Neoplasias , Carcinoma de Células Escamosas de Cabeça e Pescoço , Autofagia/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Proliferação de Células/genética , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Neoplasias Bucais/genética , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas de Neoplasias/genética , Proteínas Nucleares , Proteômica , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
17.
J Mol Model ; 27(7): 195, 2021 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-34081201

RESUMO

The adsorption and inhibition mechanism of chain length increase and group substitution of imidazole tetrafluoroborate derivatives for the corrosion inhibition of carbon steel in HCl solution was revealed in detail via the density functional theory, molecular dynamics (MD) simulation, and quantitative structure-activity relationship (QSAR) methods. The main reactive site of an ionic liquid is located on its imidazolium ring. With alkyl chain lengthening or the introduction of methyl groups onto the imidazolium ring, its molecular reactivity and electron-donating ability increase the interaction between the ionic liquid and the Fe (110) surface. Therefore, the imidazolium rings of four IL inhibitors are more likely to lie on the Fe (110) surface in parallel through chemical adsorption. The interactions between N atoms in ionic liquids and the Fe (110) surface are stronger than those between the C atoms on the imidazolium rings of the four ionic liquid, and coordination bonds can be formed between N atoms and the Fe (110) surface. Therefore, ionic liquids can hinder the interaction between corrosion particles and the Fe (110) surface, hinder the diffusion of corrosion particles, and effectively reduce the number density of corrosion particles on the Fe (110) surface. A methyl substituent on the C2 atom of the imidazolium ring can enhance the electron-donating ability and adsorption tendency much more than an increase in the alkyl chain on the N3 atom. The four inhibitors are ordered in terms of corrosion inhibition efficiency as [C12DMIM]BF4 > [C10DMIM]BF4 > [C12MIM]BF4 > [C10MIM]BF4, which agrees well with the experimental results. A good correlation between experimental inhibition efficiency, concentration and microscopic structures parameters of ILs such as energy gap ΔE, polarizability P, electronegativity χ, hardness η, softness σ, number of electrons transferred ΔN, and electrophilicity ω was achieved.


Assuntos
Boratos/química , Imidazóis/química , Líquidos Iônicos/química , Simulação de Dinâmica Molecular , Aço/química , Adsorção , Corrosão , Relação Quantitativa Estrutura-Atividade
18.
J Phys Chem B ; 125(14): 3677-3689, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33797248

RESUMO

As a new type of green electrolyte, ionic liquids have been extensively and successfully used in electrochemical systems. It is extremely important to understand the structure and characteristics of their electric double layers. The microscopic structures of room-temperature ionic liquids 1-ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([Emmim]TFSI) and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([Emim]TFSI) were studied on a flat Au(111) surface using molecular dynamics simulations. Since the interactions of [Emmim]TFSI, [Emmim]+, and TFSI- with the Au(111) surface are stronger than those of molecules (or ions) in the [Emim]TFSI system, the linear arrangement of [Emmim]TFSI and the worm-like pattern of the [Emim]TFSI system can be found near the Au(111) surface. Meanwhile, cations are all parallel to the electrode in the [Emmim]TFSI/Au(111) system and tilted toward the surface in the [Emim]TFSI/Au(111) system. TFSI- presents trans and cis conformations in [Emim]TFSI and [Emmim]TFSI systems adjacent to Au(111), respectively. A Helmholtz-like layer structure with alternating oscillations of anionic and cationic layers can be found in the [Emim]TFSI system, while the molecular layer with cations and anions existing simultaneously can be found in [Emmim]TFSI. Our results confirm that the substitution of hydrogen on C1 by methyl groups in the imidazole ring increases the interaction between the particles. It has also been proved that the change in the anion conformation and cation orientation in the [Emmim]TFSI system can be attributed to the different interaction energies of various particles. The above reasons ultimately make the images on Au(111) different in the two systems. The results provide a new perspective for studying the structure of double layers. They are helpful in deepening the understanding of the interface behavior of ionic liquids and providing a theoretical basis for the design of functional ionic liquids that are suitable for electrochemical equipment.

19.
J Phys Condens Matter ; 33(46)2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34404030

RESUMO

Half-Heusler compounds have distinguished themselves as outstanding thermoelectric materials on account of high temperature stability and large thermopower. However, the dimensionless figure of merit of traditional half-Heusler alloys remains low. In this study, we investigate the thermoelectric performance of novel ZrXPb (X= Ni, Pd, and Pt) ternary compounds by semi-classical Boltzmann transport theory combining with deformation potential. The n-type ZrNiPb and ZrPtPb exhibits obviously largeZTvalues of 1.71 around 650 K and 1.75 around 1200 K, with 1.17 × 1020 cm-3and 3.43 × 1020 cm-3, respectively. The electron and phonon structure calculations demonstrate that for the n-type ZrXPb (X= Ni, Pd, and Pt) compounds, doping at Pb site can not only modify the carrier concentrations but also significantly decrease the lattice thermal conductivity. These investigations are expected to be beneficial to the exploration of novel highZTthermoelectric materials.

20.
ACS Omega ; 6(15): 10281-10287, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34056182

RESUMO

The molecular structure of Baoqing lignite was analyzed by ultimate analysis, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, 13C solid-state nuclear magnetic resonance, and X-ray photoelectron spectroscopy. The results revealed that the aromaticity of Baoqing lignite is 27.64%, and the aromatic structure mainly contains benzene and naphthalene. The aliphatic structure consists of alkyl side chains and cycloalkyl. Oxygen atoms are present in phenol, ether, carbonyl, and carboxyl groups; nitrogen atoms are chiefly in pyridine and pyrrole; sulfur atoms mainly exist in sulfoxide sulfur. The molecular structure model of Baoqing lignite was constructed based on experimental data, and the molecular formula is C184H199O50N2S. The molecular configuration was optimized by adopting the M06-2X basis set in the framework of density functional theory. Moreover, the simulated FTIR spectrum was in good agreement with the experimental spectra, proving the accuracy of the molecular structure. The molecular model of Baoqing lignite contains a majority of aliphatic structures and aromatic rings with a poor condensation degree. Moreover, the aromatic layers irregularly arrange in space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA