Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Chemistry ; 27(11): 3753-3760, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33145861

RESUMO

Dimethyl sulfoxide (DMSO) is a universally used solvent in various synthetic reactions, and trace amounts of DMSO residual are often seen on the surface of chemical product. It is difficult to quickly determine whether the residual DMSO is washed completely. This work reports a CdII metal-organic framework (MOF) SXU-4 which can detect trace amounts of DMSO in various solvents. Fluorescence experiments reveal its turn-on fluorescence effect toward DMSO with high selectivity and sensitivity, indicating that it can be used as an effective luminescent probe for rapid chemical product purity detection by testing the washing solution. Crystallographically characterized DMSO loaded SXU-4 (DMSO@SXU-4), in combination with computational results uncover that the enhanced DMSO-MOF conjugation through multiple DMSO-MOF supramolecule interactions and charge rearrangement are the main causes of fluorescence intensification.

2.
Chemistry ; 23(16): 3885-3890, 2017 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-27991700

RESUMO

Metal-organic frameworks (MOFs) represent a promising class of porous materials. However, MOFs show poor processability that impedes their full potential in applications. This work develops a composite strategy to skillfully load MOFs on a polymer plate to afford processability for these powder materials. A predesigned mesoporous MOF with active -NH2 groups around the pore walls was prepared and its copolymerization with the -NCO groups of macromonomers (polyurethane acrylate) could be facilely induced by an initiator under mild conditions. Notably, the target MOF-polymer composite is transparent, elastic, and shows enhanced Fe3+ detection compared with that of the individual MOF functional component. This result can be ascribed to the synergistic effect of the composite with newly formed chemical bonds between the MOF particle and polymer matrix.

3.
Inorg Chem ; 56(13): 7328-7331, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28613856

RESUMO

A custom-designed bifunctional ligand was used to connect an in situ formed Co3(OH) cluster affording a porous metal-organic framework, which represents the first case of ncb-type networks constructed from a single kind of ditopic ligand. Noticeably, the activated MOF shows high volumetric C2H2 uptake and excellent adsorption selectivity for C2H2/CO2 separation at room temperature with a low sorption heat.

4.
Inorg Chem ; 56(24): 14767-14770, 2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29215270

RESUMO

The self-assembly of a bifunctional organic ligand with a formate-bridged rod-shaped secondary building unit leads to a new microporous metal-organic framework (MOF). This MOF shows a moderately high C2H2 storage capacity (145 cm3/g) and an excellent adsorption selectivity for C2H2/CO2 (11) at room temperature. Furthermore, its discriminatory sorption behavior toward C2H2 and CO2 was probed by computational analysis in detail.

5.
Chemistry ; 22(42): 15035-15041, 2016 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-27593724

RESUMO

Two isostructural CoII -based metal-organic frameworks (MOFs) with the opposite framework charges have been constructed, which can be simply controlled by changing the tetrazolyl or triazolyl terminal in two bifunctional ligands. Notably, the cationic MOF 2 can adsorb much more C2 H2 than the anionic MOF 1 with an increase of 88 % for C2 H2 uptake at 298 K in spite of more active nitrogen sites in 1. Theoretical calculations indicate that both nitrate and triazolyl play vital roles in C2 H2 binding and the C2 H2 adsorption isotherm confirms that the enhanced C2 H2 uptake for 2 (225 and 163 cm3 g-1 at 273 and 298 K) is exceptionally high for MOF materials without open metal sites or uncoordinated polar atom groups on the frameworks.

6.
Inorg Chem ; 55(17): 8892-7, 2016 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-27494087

RESUMO

Herein, we report the synthesis of a new mixed-linker Zn(II)-based metal-organic framework (MOF), {[Zn2(atz)2(bpydb)](DMA)8}n (1) (atz = deprotonated 3-amino-1,2,4-triazole, bpydb = deprotonated 4,4'-(4,4'-bipyridine-2,6-diyl) dibenzoic acid, DMA = N,N-dimethylacetamide), through symmetry modulation of a triazole ligand. The desymmetrized triazole linkers not only bond to the Zn(II) ions to result in a new helical Zn-triazolate chain building unit but also lead to the formation of a highly porous framework (N2 uptake: 617 cm(3)/g; BET surface area: 2393 m(2)/g) with 1D helical channels. The adsorption properties of desolved 1 were investigated by H2, C2H2, CO2, and CH4 sorption experiments, which showed that 1 exhibited high uptake capacity for H2 at 77 K and C2H2 around room temperature. More importantly, the high C2H2 uptake capacity but low binding energy makes this MOF a promising candidate for effective C2H2 capture from C2H2/CO2 and C2H2/CH4 mixed gases with low regenerative energy cost. In addition, 1 shows potential application for the luminescence sensing of small aromatic molecules picric acid (PA) and p-xylene (PX).

7.
Chemistry ; 21(27): 9713-9, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26013160

RESUMO

A promising alternative strategy for designing mesoporous metal-organic frameworks (MOFs) has been proposed, by modifying the symmetry rather than expanding the length of organic linkers. By means of this approach, a unique MOF material based on the target [Zn8(ad)4] (ad = adeninate) clusters and C3-symmetric organic linkers can be obtained, with trigonal microporous (ca., 0.8 nm) and hexagonal mesoporous (ca., 3.0 nm) 1D channels. Moreover, the resulting 446-MOF shows distinct reactivity to transition and lanthanide metal ions. Significantly, the transmetalation of Co(II) or Ni(II) on the Zn(II) centers in 446-MOF can enhance the sorption capacities of CO2 and CH4 (16-21%), whereas the impregnation of Eu(III) and Tb(III) in the channels of 446-MOF will result in adjustable light-emitting behaviors.

8.
Adv Sci (Weinh) ; 10(8): e2205786, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36683249

RESUMO

A defect-rich 2D p-n heterojunction, Cox Ni3- x (HITP)2 /BNSs-P (HITP: 2,3,6,7,10,11-hexaiminotriphenylene), is constructed using a semiconductive metal-organic framework (MOF) and boron nanosheets (BNSs) by in situ solution plasma modification. The heterojunction is an effective catalyst for the electrocatalytic nitrogen reduction reaction (eNRR) under ambient conditions. Interface engineering and plasma-assisted defects on the p-n Cox Ni3-x (HITP)2 /BNSs-P heterojunction led to the formation of both Co-N3 and B…O dual-active sites. As a result, Cox Ni3-x (HITP)2 /BNSs-P has a high NH3 yield of 128.26 ± 2.27 µg h-1 mgcat. -1 and a Faradaic efficiency of 52.92 ± 1.83% in 0.1 m HCl solution. The catalytic mechanism for the eNRR is also studied by in situ FTIR spectra and DFT calculations. A Cox Ni3- x (HITP)2 /BNSs-P-based Zn-N2 battery achieved an unprecedented power output with a peak power density of 5.40 mW cm-2 and an energy density of 240 mA h gzn -1 in 0.1 m HCl. This study establishes an efficient strategy for the rational design, using defect and interfacial engineering, of advanced eNRR catalysts for ammonia synthesis under ambient conditions.

9.
Food Chem ; 402: 134357, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36174348

RESUMO

We have proposed a novel electrochemical aptasensing strategy for efficiently detecting staphylococcus aureus (S. aureus) based on copper-based metal-organic framework encapsulated with plenty of Cu2O nanocrystals (represented by ML-Cu2O@Cu-MOF) synthesized using the mixed ligands of diphenylethyne-3,3',5,5'-tetracarboxylic acid, 1,3,5-benzenetricarboxylic acid, and terephthalic acid. The ML-Cu2O@Cu-MOF nanospheres comprised multiple Cu valence states (Cu0/Cu+/Cu2+) and Cu2O nanocrystals, possessed defect-rich crystal structure, high anchoring ability toward aptamer and boosted electrical conductivity. The gained ML-Cu2O@Cu-MOF-based biosensor exhibited lower limit of detection toward S. aureus, as low as 2.0 and 1.6 CFU mL-1 within the S. aureus concentration from 10 to 1 × 108 CFU mL-1 obtained by electrochemical impedance spectroscopy and differential pulse voltammetry techniques, respectively. Additionally, the developed aptasensor also demonstrated high superior stability, excellent reproducibility, acceptable regeneration ability, and wide practicality. The present work can give rise to an alternative aptasensing strategy for analyzing foodborne bacteria or other food containments and ensuring food safety assessment.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Cobre/química , Staphylococcus aureus , Aptâmeros de Nucleotídeos/química , Limite de Detecção , Reprodutibilidade dos Testes , Ligantes , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos
10.
Org Lett ; 20(11): 3245-3249, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29756786

RESUMO

The catalytic [5 + 1] annulation/5-exo-cyclization reaction of amidines with diynes is reported herein. This protocol provides highly atom-economical access to fabricate two nitrogen-containing heterocycles in one step with high efficiency and selectivity. Significantly, this reaction represents the first example of using diyne as a one-carbon reaction partner in C-H functionalization. Kinetic isotope effects suggested that the catalytic cycle of this reaction is initiated by the cleavage of the ortho C-H bond in the N-phenyl ring of amidines, which is likely involved in the rate-limiting step. Calculations based on density functional theory (DFT) indicated that C-H activation and the formation of Rh(V) species via 5-exo-cyclization could be vital processes for this cascade transformation.

11.
J Colloid Interface Sci ; 531: 148-159, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031257

RESUMO

A new bimetallic Co/Fe-MOF was synthesized and phosphatized to produce a visible-light-active Co/Fe binary metal phosphide embedded in a mesoporous carbon matrix (denoted by CoP/Fe2P@mC). The results of X-ray diffraction and photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy reveal the formation of CoP and Fe2P nanoparticles together with the Co and Fe metallic state. Combining the high electron-hole separation rate of Fe2P@mC, fast electron transfer of CoP@mC, and the strong adsorption of mesoporous carbon, the as-prepared CoP/Fe2P@mC catalyst exhibits substantially enhanced photocatalytic activity toward rhodamine B (RhB) degradation under visible light irradiation. Visible light harvesting efficiency is enhanced by the suitable bandgap structure of the CoP/Fe2P@mC photocatalyst. Moreover, the possible photocatalytic mechanism of CoP/Fe2P@mC toward RhB degradation was proposed on the basis of radical trapping and electron spin resonance results. This finding illustrates a potential utilization of bimetallic MOF-derived metal phosphide as a photocatalyst to remove dye pollutants in the environment.

12.
Chem Commun (Camb) ; 53(77): 10668-10671, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-28905061

RESUMO

A cage-based anionic Na(i)-organic framework with a unique Na9 cluster-based secondary building unit and a cage-in-cage structure was constructed. The selective separation of dyes with different charges and sizes was investigated. Furthermore, the Rh6G@MOF composite could be applied as a recyclable fluorescent sensor for detecting picric acid (PA) with high sensitivity and selectivity.

13.
ACS Appl Mater Interfaces ; 9(8): 7202-7208, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28169514

RESUMO

To avoid the instability and inefficiency for anion-exchange resins and layered double-hydroxides materials, we present herein a flexible coordination network [Ag(L243)](NO3)(H2O)(CH3CN) (L243 = 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole) with superefficient trapping capacity for permanganate, as a group-7 oxoanion model for radiotoxic pertechnetate pollutant. Furthermore, a high-throughput screening strategy has been developed based on concentration-gradient design principle to ascertain the process and mechanism for anion exchange. Significantly, a series of intermediates can be successfully isolated as the qualified crystals for single-crystal X-ray diffraction. The result evidently indicates that such a dynamic material will show remarkable breathing effect of the three-dimensional host framework upon anion exchange, which mostly facilitates the anion trapping process. This established methodology will provide a general strategy to discover the internal secrets of complicated solid-state reactions in crystals at the molecular level.

14.
ACS Sens ; 2(7): 998-1005, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28750538

RESUMO

Two-dimensional (2D) zirconium-based metal-organic framework nanosheets embedded with Au nanoclusters (denoted as 2D AuNCs@521-MOF) were prepared via a one-pot method under mild conditions. The optimized 2D AuNCs@521-MOF nanosheets not only possessed high specific surface area, physicochemical stability, and good electrochemical activity but also exhibited strong bioaffinity toward biomolecule-bearing phosphate groups. Consequently, a large amount of cocaine aptamer strands can be immobilized onto the substrate modified by 2D AuNCs@521-MOF nanosheet, further leading to the formation of a constructed biosensitive platform, which can be used to successfully detect cocaine through the specific binding interactions between cocaine and aptamer strands. The results demonstrated that the 2D AuNCs@521-MOF-based aptasensor had high sensitivity for detecting cocaine within the broad concentration range of 0.001-1.0 ng·mL-1 and the low limit of detection of 1.29 pM (0.44 pg·mL-1) and 2.22 pM (0.75 pg·mL-1) as determined by electrochemical impedance spectroscopy and differential pulse voltammetry, respectively. As expected, with the advantages of high selectivity, repeatability, stability, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of cocaine.

15.
Biosens Bioelectron ; 91: 804-810, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28152486

RESUMO

Two unique immunosensors made of aluminum-based metal-organic frameworks (MOFs), namely, 515- and 516-MOFs, with 4,4',4''-nitrilotribenzoic acid (H3NTB) were successfully obtained to efficiently assess food safety. The as-prepared 515- and 516-MOFs exhibited superior thermal and physicochemical stability, high electrochemical activity, and good biocompatibility. Among these immunosensors, 516-MOF showed a preferable biosensing ability toward analytes determined by electrochemical techniques. The developed 516-MOF-based electrochemical biosensor not only demonstrated high sensitivity with low detection limits of 0.70 and 0.40pgmL-1 toward vomitoxin and salbutamol, respectively, but also showed good selectivity in the presence of other interferences. Therefore, with the advantages of high sensitivity, good selectivity, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of poisonous and harmful residues in food.


Assuntos
Alumínio/química , Técnicas Eletroquímicas/métodos , Análise de Alimentos/métodos , Contaminação de Alimentos/análise , Compostos Organometálicos/química , Albuterol/análise , Animais , Anticorpos Imobilizados/química , Técnicas Biossensoriais/métodos , Broncodilatadores/análise , Limite de Detecção , Modelos Moleculares , Carne Vermelha/análise , Suínos , Tricotecenos/análise , Vinho/análise
16.
Biosens Bioelectron ; 94: 358-364, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28319903

RESUMO

A new core-shell nanostructured composite composed of Fe(III)-based metal-organic framework (Fe-MOF) and mesoporous Fe3O4@C nanocapsules (denoted as Fe-MOF@mFe3O4@mC) was synthesized and developed as a platform for determining trace heavy metal ions in aqueous solution. Herein, the mFe3O4@mC nanocapsules were prepared by calcining the hollow Fe3O4@C that was obtained using the SiO2 nanoparticles as the template, followed by composing the Fe-MOF. The Fe-MOF@mFe3O4@mC nanocomposite demonstrated excellent electrochemical activity, water stability and high specific surface area, consequently resulting in the strong biobinding with heavy-metal-ion-targeted aptamer strands. Furthermore, by combining the conformational transition interaction, which is caused by the formation of the G-quadruplex between a single-stranded aptamer and high adsorbed amounts of heavy metal ions, the developed aptasensor exhibited a good linear relationship with the logarithm of heavy metal ion (Pb2+ and As3+) concentration over the broad range from 0.01 to 10.0nM. The detection limits were estimated to be 2.27 and 6.73 pM toward detecting Pb2+ and As3+, respectively. The proposed aptasensor showed good regenerability, excellent selectivity, and acceptable reproducibility, suggesting promising applications in environment monitoring and biomedical fields.


Assuntos
Técnicas Biossensoriais/métodos , Eletroquímica/métodos , Metais Pesados/isolamento & purificação , Monitoramento Ambiental , Compostos Férricos/química , Quadruplex G , Íons/química , Limite de Detecção , Estruturas Metalorgânicas/química , Nanoestruturas , Dióxido de Silício/química
17.
ACS Sens ; 2(7): 982-989, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28750523

RESUMO

A series of Zr-based metal-organic framework (MOF) composites embedded with three kinds of aptamer strands (509-MOF@Apt) were achieved by a one-step de novo synthetic approach. A platform for ultrasensitive detection of analytes, namely, thrombin, kanamycin, and carcinoembryonic antigen (CEA), was also established. Considering the conformational changes caused by the binding interactions between aptamer strands and targeted molecules, the label-free electrochemical aptasensors based on 509-MOF@Apt composites could be developed to detect various target molecules. By comparing the common fabrication approaches of aptasensors, a distinct determination mechanism was presented through analysis of the electrochemical measurements on different interaction behaviors between probe aptamer strands and 509-MOF materials. The optimized aptasensors based on 509-MOFs@Apt demonstrated excellent sensitivity (with the detection limit of 0.40, 0.37, and 0.21 pg mL-1 for CEA, thrombin, and kanamycin, respectively), stability, repeatability, and applicability. This work will provide a new platform for direct and feasible detection in biosensing related to clinical diagnostics and therapeutics, and further, extend the scope of potential applications for MOF materials.

18.
Chem Commun (Camb) ; 52(54): 8413-6, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27301546

RESUMO

Incorporating the in situ formed size-matching molecular building blocks (MBBs) into the open channels will remarkably improve the robustness and gas sorption performance of an evacuated metal-organic framework. As a result, such MBBs can transfer the open metal sites from the framework walls to the channel centers and separate the large channels into multiple smaller voids, leading to a molecular sieving effect and high-performance gas-separation of the modified material.

19.
ACS Appl Mater Interfaces ; 8(28): 18043-50, 2016 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-27340895

RESUMO

A moisture-stable three-dimensional (3D) metal-organic framework (MOF), {(Me2NH2)[Zn2(bpydb)2(ATZ)](DMA)(NMF)2}n (1, where bpydb = 4,4'-(4,4'-bipyridine-2,6-diyl)dibenzoate, ATZ = deprotonated 5-aminotetrazole, DMA = N,N-dimethylacetamide, and NMF = N-methylformamide), with uncoordinated N-donor sites and charged framework skeleton was fabricated. This MOF exhibits interesting structural dynamic upon CO2 sorption at 195 K and high CO2/N2 (127) and CO2/CH4 (131) sorption selectivity at 298 K and 1 bar. Particularly, its CO2/CH4 selectivity is among the highest MOFs for selective CO2 separation. The results of Grand Canonical Monte Carlo (GCMC) simulation indicate that the polar framework contributes to the strong framework-CO2 binding at zero loading, and the tetrazole pillar contributes to the high CO2 uptake capacity at high loading. Furthermore, the solvent-responsive luminescent properties of 1 indicate that it could be utilized as a fluorescent sensor to detect trace amounts of nitrobenzene in both solvent and vapor systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA