Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(6)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799694

RESUMO

There are numerous works that report wirelessly controlling the locomotion of soft robots through a single actuation method of light or magnetism. However, coupling multiple driving modes to improve the mobility of robots is still in its infancy. Here, we present a soft multi-legged millirobot that can move, climb a slope, swim and detect a signal by near-infrared irradiation (NIR) light or magnetic field dual actuation. Due to the design of the feet structure, our soft millirobot incorporates the advantages of a single actuation mode of light or magnetism. Furthermore, it can execute a compulsory exercise to sense a signal and analyze the ambience fluctuation in a narrow place. This work provides a novel alternative for soft robots to achieve multimode actuation and signal sensing.

2.
Nanomaterials (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803612

RESUMO

Rare earth (RE) element-doped two-dimensional (2D) transition metal dichalcogenides (TMDCs) with applications in luminescence and magnetics have received considerable attention in recent years. To date, the effect of RE element doping on the electronic properties of monolayer 2D-TMDCs remains unanswered due to challenges including the difficulty of achieving valid monolayer doping and introducing RE elements with distinct valence and atomic configurations. Herein, we report a unique strategy to grow the Sm-doped monolayer MoS2 film by using an atmospheric pressure chemical vapor deposition method with the substrate face down on top of the growth source. A stable monolayer triangular Sm-doped MoS2 was achieved. The threshold voltage of an Sm-doped MoS2-based field effect transistor (FET) moved from -12 to 0 V due to the p-type character impurity state introduced by Sm ions in monolayer MoS2. Additionally, the electrical performance of the monolayer MoS2-based FET was improved by RE element Sm doping, including a 500% increase of the on/off current ratio and a 40% increase of the FET's mobility. The electronic property enhancement resulted from Sm doping MoS2, which led internal lattice strain and changes in Fermi energy levels. These findings provide a general approach to synthesize RE element-doped monolayer 2D-TMDCs and to enrich their applications in electrical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA