RESUMO
Brain scans acquired across large, age-diverse cohorts have facilitated recent progress in establishing normative brain aging charts. Here, we ask the critical question of whether cross-sectional estimates of age-related brain trajectories resemble those directly measured from longitudinal data. We show that age-related brain changes inferred from cross-sectionally mapped brain charts can substantially underestimate actual changes measured longitudinally. We further find that brain aging trajectories vary markedly between individuals and are difficult to predict with population-level age trends estimated cross-sectionally. Prediction errors relate modestly to neuroimaging confounds and lifestyle factors. Our findings provide explicit evidence for the importance of longitudinal measurements in ascertaining brain development and aging trajectories.
Assuntos
Envelhecimento , Encéfalo , Humanos , Estudos Transversais , Estudos Longitudinais , Encéfalo/diagnóstico por imagem , Neuroimagem , Imageamento por Ressonância MagnéticaRESUMO
The diagnosis of obsessive-compulsive disorder (OCD) has been linked with changes in frontostriatal resting-state connectivity. However, replication of prior findings is lacking, and the mechanistic understanding of these effects is incomplete. To confirm and advance knowledge on changes in frontostriatal functional connectivity in OCD, participants with OCD and matched healthy controls underwent resting-state functional, structural and diffusion neuroimaging. Functional connectivity changes in frontostriatal systems were here replicated in individuals with OCD (n = 52) compared with controls (n = 45). OCD participants showed greater functional connectivity (t = 4.3, PFWE = 0.01) between the nucleus accumbens (NAcc) and the orbitofrontal cortex (OFC) but lower functional connectivity between the dorsal putamen and lateral prefrontal cortex (t = 3.8, PFWE = 0.04) relative to controls. Computational modelling suggests that NAcc-OFC connectivity changes reflect an increased influence of NAcc over OFC activity and reduced OFC influence over NAcc activity (posterior probability, Pp > 0.66). Conversely, dorsal putamen showed reduced modulation over lateral prefrontal cortex activity (Pp > 0.90). These functional deregulations emerged on top of a generally intact anatomical substrate. We provide out-of-sample replication of opposite changes in ventro-anterior and dorso-posterior frontostriatal connectivity in OCD and advance the understanding of the neural underpinnings of these functional perturbations. These findings inform the development of targeted therapies normalizing frontostriatal dynamics in OCD.
Assuntos
Imageamento por Ressonância Magnética , Transtorno Obsessivo-Compulsivo , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Transtorno Obsessivo-Compulsivo/diagnóstico por imagem , Núcleo Accumbens , Putamen/diagnóstico por imagem , Mapeamento EncefálicoRESUMO
Understanding the genetic basis of biological aging in multi-organ systems is vital for elucidating age-related disease mechanisms and identifying therapeutic interventions. This study characterized the genetic architecture of the biological age gap (BAG) across nine human organ systems in 377,028 individuals of European ancestry from the UK Biobank. We discovered 393 genomic loci-BAG pairs (P-value<5×10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary, and renal systems. We observed BAG-organ specificity and inter-organ connections. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system while exerting pleiotropic effects on traits linked to multiple organ systems. A gene-drug-disease network confirmed the involvement of the metabolic BAG-associated genes in drugs targeting various metabolic disorders. Genetic correlation analyses supported Cheverud's Conjecture1 - the genetic correlation between BAGs mirrors their phenotypic correlation. A causal network revealed potential causal effects linking chronic diseases (e.g., Alzheimer's disease), body weight, and sleep duration to the BAG of multiple organ systems. Our findings shed light on promising therapeutic interventions to enhance human organ health within a complex multi-organ network, including lifestyle modifications and potential drug repositioning strategies for treating chronic diseases. All results are publicly available at https://labs-laboratory.com/medicine.
RESUMO
Investigating the genetic underpinnings of human aging is essential for unraveling the etiology of and developing actionable therapies for chronic diseases. Here, we characterize the genetic architecture of the biological age gap (BAG; the difference between machine learning-predicted age and chronological age) across nine human organ systems in 377,028 participants of European ancestry from the UK Biobank. The BAGs were computed using cross-validated support vector machines, incorporating imaging, physical traits and physiological measures. We identify 393 genomic loci-BAG pairs (P < 5 × 10-8) linked to the brain, eye, cardiovascular, hepatic, immune, metabolic, musculoskeletal, pulmonary and renal systems. Genetic variants associated with the nine BAGs are predominantly specific to the respective organ system (organ specificity) while exerting pleiotropic links with other organ systems (interorgan cross-talk). We find that genetic correlation between the nine BAGs mirrors their phenotypic correlation. Further, a multiorgan causal network established from two-sample Mendelian randomization and latent causal variance models revealed potential causality between chronic diseases (for example, Alzheimer's disease and diabetes), modifiable lifestyle factors (for example, sleep duration and body weight) and multiple BAGs. Our results illustrate the potential for improving human organ health via a multiorgan network, including lifestyle interventions and drug repurposing strategies.
Assuntos
Envelhecimento , Humanos , Envelhecimento/genética , Envelhecimento/fisiologia , Estudo de Associação Genômica Ampla , Masculino , Feminino , Idoso , Pessoa de Meia-Idade , Reino Unido , Fenótipo , Especificidade de ÓrgãosRESUMO
Biological aging of human organ systems reflects the interplay of age, chronic disease, lifestyle and genetic risk. Using longitudinal brain imaging and physiological phenotypes from the UK Biobank, we establish normative models of biological age for three brain and seven body systems. Here we find that an organ's biological age selectively influences the aging of other organ systems, revealing a multiorgan aging network. We report organ age profiles for 16 chronic diseases, where advanced biological aging extends from the organ of primary disease to multiple systems. Advanced body age associates with several lifestyle and environmental factors, leukocyte telomere lengths and mortality risk, and predicts survival time (area under the curve of 0.77) and premature death (area under the curve of 0.86). Our work reveals the multisystem nature of human aging in health and chronic disease. It may enable early identification of individuals at increased risk of aging-related morbidity and inform new strategies to potentially limit organ-specific aging in such individuals.
Assuntos
Envelhecimento , Leucócitos , Humanos , Envelhecimento/genética , Doença Crônica , Fatores de Risco , Encéfalo/diagnóstico por imagemRESUMO
Importance: Physical health and chronic medical comorbidities are underestimated, inadequately treated, and often overlooked in psychiatry. A multiorgan, systemwide characterization of brain and body health in neuropsychiatric disorders may enable systematic evaluation of brain-body health status in patients and potentially identify new therapeutic targets. Objective: To evaluate the health status of the brain and 7 body systems across common neuropsychiatric disorders. Design, Setting, and Participants: Brain imaging phenotypes, physiological measures, and blood- and urine-based markers were harmonized across multiple population-based neuroimaging biobanks in the US, UK, and Australia, including UK Biobank; Australian Schizophrenia Research Bank; Australian Imaging, Biomarkers, and Lifestyle Flagship Study of Ageing; Alzheimer's Disease Neuroimaging Initiative; Prospective Imaging Study of Ageing; Human Connectome Project-Young Adult; and Human Connectome Project-Aging. Cross-sectional data acquired between March 2006 and December 2020 were used to study organ health. Data were analyzed from October 18, 2021, to July 21, 2022. Adults aged 18 to 95 years with a lifetime diagnosis of 1 or more common neuropsychiatric disorders, including schizophrenia, bipolar disorder, depression, generalized anxiety disorder, and a healthy comparison group were included. Main Outcomes and Measures: Deviations from normative reference ranges for composite health scores indexing the health and function of the brain and 7 body systems. Secondary outcomes included accuracy of classifying diagnoses (disease vs control) and differentiating between diagnoses (disease vs disease), measured using the area under the receiver operating characteristic curve (AUC). Results: There were 85â¯748 participants with preselected neuropsychiatric disorders (36â¯324 male) and 87â¯420 healthy control individuals (40â¯560 male) included in this study. Body health, especially scores indexing metabolic, hepatic, and immune health, deviated from normative reference ranges for all 4 neuropsychiatric disorders studied. Poor body health was a more pronounced illness manifestation compared to brain changes in schizophrenia (AUC for body = 0.81 [95% CI, 0.79-0.82]; AUC for brain = 0.79 [95% CI, 0.79-0.79]), bipolar disorder (AUC for body = 0.67 [95% CI, 0.67-0.68]; AUC for brain = 0.58 [95% CI, 0.57-0.58]), depression (AUC for body = 0.67 [95% CI, 0.67-0.68]; AUC for brain = 0.58 [95% CI, 0.58-0.58]), and anxiety (AUC for body = 0.63 [95% CI, 0.63-0.63]; AUC for brain = 0.57 [95% CI, 0.57-0.58]). However, brain health enabled more accurate differentiation between distinct neuropsychiatric diagnoses than body health (schizophrenia-other: mean AUC for body = 0.70 [95% CI, 0.70-0.71] and mean AUC for brain = 0.79 [95% CI, 0.79-0.80]; bipolar disorder-other: mean AUC for body = 0.60 [95% CI, 0.59-0.60] and mean AUC for brain = 0.65 [95% CI, 0.65-0.65]; depression-other: mean AUC for body = 0.61 [95% CI, 0.60-0.63] and mean AUC for brain = 0.65 [95% CI, 0.65-0.66]; anxiety-other: mean AUC for body = 0.63 [95% CI, 0.62-0.63] and mean AUC for brain = 0.66 [95% CI, 0.65-0.66). Conclusions and Relevance: In this cross-sectional study, neuropsychiatric disorders shared a substantial and largely overlapping imprint of poor body health. Routinely monitoring body health and integrated physical and mental health care may help reduce the adverse effect of physical comorbidity in people with mental illness.
Assuntos
Transtorno Bipolar , Encéfalo , Adulto Jovem , Humanos , Masculino , Estudos Transversais , Estudos Prospectivos , Austrália , Encéfalo/diagnóstico por imagem , Transtorno Bipolar/psicologiaRESUMO
Disease heterogeneity poses a significant challenge for precision diagnostics in both clinical and sub-clinical stages. Recent work leveraging artificial intelligence (AI) has offered promise to dissect this heterogeneity by identifying complex intermediate phenotypes - herein called dimensional neuroimaging endophenotypes (DNEs) - which subtype various neurologic and neuropsychiatric diseases. We investigate the presence of nine such DNEs derived from independent yet harmonized studies on Alzheimer's disease (AD1-2)1, autism spectrum disorder (ASD1-3)2, late-life depression (LLD1-2)3, and schizophrenia (SCZ1-2)4, in the general population of 39,178 participants in the UK Biobank study. Phenome-wide associations revealed prominent associations between the nine DNEs and phenotypes related to the brain and other human organ systems. This phenotypic landscape aligns with the SNP-phenotype genome-wide associations, revealing 31 genomic loci associated with the nine DNEs (Bonferroni corrected P-value < 5×10-8/9). The DNEs exhibited significant genetic correlations, colocalization, and causal relationships with multiple human organ systems and chronic diseases. A causal effect (odds ratio=1.25 [1.11, 1.40], P-value=8.72×1-4) was established from AD2, characterized by focal medial temporal lobe atrophy, to AD. The nine DNEs and their polygenic risk scores significantly improved the prediction accuracy for 14 systemic disease categories and mortality. These findings underscore the potential of the nine DNEs to identify individuals at a high risk of developing the four brain diseases during preclinical stages for precision diagnostics. All results are publicly available at: http://labs.loni.usc.edu/medicine/.