Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Am Chem Soc ; 146(19): 13356-13366, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38602480

RESUMO

The crucial roles that glycans play in biological systems are determined by their structures. However, the analysis of glycan structures still has numerous bottlenecks due to their inherent complexities. The nanopore technology has emerged as a powerful sensor for DNA sequencing and peptide detection. This has a significant impact on the development of a related research area. Currently, nanopores are beginning to be applied for the detection of simple glycans, but the analysis of complex glycans by this technology is still challenging. Here, we designed an engineered α-hemolysin nanopore M113R/T115A to achieve the sensing of complex glycans at micromolar concentrations and under label-free conditions. By extracting characteristic features to depict a three-dimensional (3D) scatter plot, glycans with different numbers of functional groups, various chain lengths ranging from disaccharide to decasaccharide, and distinct glycosidic linkages could be distinguished. Molecular dynamics (MD) simulations show different behaviors of glycans with ß1,3- or ß1,4-glycosidic bonds in nanopores. More importantly, the designed nanopore system permitted the discrimination of each glycan isomer with different lengths in a mixture with a separation ratio of over 0.9. This work represents a proof-of-concept demonstration that complex glycans can be analyzed using nanopore sequencing technology.


Assuntos
Simulação de Dinâmica Molecular , Nanoporos , Polissacarídeos , Polissacarídeos/química , Proteínas Hemolisinas/química , Engenharia de Proteínas
2.
Org Biomol Chem ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39246045

RESUMO

Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.

3.
J Am Chem Soc ; 145(29): 15879-15887, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37340703

RESUMO

Core fucosylation and O-GlcNAcylation are the two most famous protein glycosylation modifications that regulate diverse physiological and pathological processes in living organisms. Here, a "two birds one stone" strategy has been described for the site-specific analysis of core fucosylation and O-GlcNAcylation. Taking advantage of two mutant endoglycosidases (EndoF3-D165A and EndoCC-N180H), which efficiently and specifically recognize core fucose and O-GlcNAc, glycopeptides can be labeled using a biantennary N-glycan probe bearing azido and oxazoline groups. Then, a temperature-sensitive poly(N-isopropylacrylamide) polymer functionalized with dibenzocyclooctyne was introduced to facilitate the enrichment of the labeled glycopeptides from the complex mixture. The captured glycopeptides can be further released enzymatically by wild-type endoglycosidases (EndoF3 and EndoCC) in a traceless manner for mass spectrometry (MS) analysis. The described strategy allows simultaneous profiling of core-fucosylated glycoproteome and O-GlcNAcylated glycoproteome from one complex sample by MS technology and searching the database using different variable modifications.


Assuntos
Glicopeptídeos , Glicosídeo Hidrolases , Glicosilação , Espectrometria de Massas/métodos , Glicopeptídeos/química , Glicosídeo Hidrolases/metabolismo
4.
Clin Oral Implants Res ; 34(6): 555-564, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36847706

RESUMO

BACKGROUND: While suggested to be effective in tissue regeneration, the effects of horizontal platelet-rich fibrin (H-PRF) bone block in sinus augmentation have not been verified in an animal model. METHODS: A total of 12 male New Zealand white rabbits that underwent sinus augmentation were divided into two groups: deproteinized bovine bone mineral (DBBM) only and H-PRF bone block. H-PRF was prepared at 700 × g for 8 min using a horizontal centrifuge. The H-PRF bone block was prepared by mixing 0.1 g DBBM with H-PRF fragments and then adding liquid H-PRF. Samples were collected after 4 and 8 weeks and analyzed using microcomputed tomography (micro-CT) for vertical bone gain of the sinus, bone volume/total volume (BV/TV) percentage, trabecular number (Tb.N), trabecular thickness (Tb.Th) and trabecular separation (Tb.Sp). Then, histological analyses were performed to investigate new blood vessels, material residue, bone formation and osteoclasts. RESULTS: Higher vertical bone gain of the sinus floor, BV/TV percentage, Tb.Th, and Tb.N and lower Tb.Sp were found in the H-PRF bone block group at both time points compared with the DBBM group. Higher amounts of new blood vessels and more osteoclasts were found in the H-PRF bone block group than in the DBBM group at both time points, especially in the regions close to the bone plate. More new bone formation and less material residue were observed in the H-PRF bone block group at 8 weeks. CONCLUSIONS: H-PRF bone block showed greater potential for sinus augmentation by promoting angiogenesis, bone formation and bone remodeling in a rabbit model.


Assuntos
Substitutos Ósseos , Fibrina Rica em Plaquetas , Levantamento do Assoalho do Seio Maxilar , Masculino , Animais , Bovinos , Coelhos , Seio Maxilar/diagnóstico por imagem , Seio Maxilar/cirurgia , Levantamento do Assoalho do Seio Maxilar/métodos , Microtomografia por Raio-X , Substitutos Ósseos/farmacologia , Substitutos Ósseos/uso terapêutico , Regeneração Óssea
5.
J Am Chem Soc ; 144(10): 4289-4293, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35138101

RESUMO

O-linked N-acetylglucosamine (O-GlcNAc) is a prevalent protein modification that plays fundamental roles in both cell physiology and pathology. O-GlcNAc is catalyzed solely by O-GlcNAc transferase (OGT). The study of protein O-GlcNAc function is limited by the lack of tools to control OGT activity with spatiotemporal resolution in cells. Here, we report light control of OGT activity in cells by replacing a catalytically essential lysine residue with a genetically encoded photocaged lysine. This enables the expression of a transiently inactivated form of OGT, which can be rapidly reactivated by photo-decaging. We demonstrate the activation of OGT activity by monitoring the time-dependent increase of cellular O-GlcNAc and profile glycoproteins using mass-spectrometry-based quantitative proteomics. We further apply this activation strategy to control the morphological contraction of fibroblasts. Furthermore, we achieved spatial activation of OGT activity predominantly in the cytosol. Thus, our approach provides a valuable chemical tool to control cellular O-GlcNAc with much needed spatiotemporal precision, which aids in a better understanding of O-GlcNAc function.


Assuntos
Lisina , N-Acetilglucosaminiltransferases , Acetilglucosamina/metabolismo , Glicoproteínas/metabolismo , Lisina/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Proteômica
6.
Am J Primatol ; 84(6): e23372, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35262940

RESUMO

Traditionally, the genus Rhinopithecus (Milne-Edwards, 1872, Primates, Colobinae) included four allopatric species, restricted in their distributions to China and Vietnam. In 2010, a fifth species, the black snub-nosed monkey (Rhinopithecus strykeri) was discovered in the Gaoligong Mountains located on the border between China and Myanmar. Despite the remoteness, complex mountainous terrain, dense fog, and armed conflict that characterizes this region, over this past decade Chinese and Myanmar scientists have begun to collect quantitative data on the ecology, behavior and conservation requirements of R. strykeri. In this article, we review the existing data and present new information on the life history, ecology, and population size of R. strykeri. We discuss these data in the context of past and current conservation challenges faced by R. strykeri, and propose a series of both short-term and long-term management actions to ensure the survival of this Critically Endangered primate species. Specifically, we recommend that the governments and stakeholders in China and Myanmar formulate a transboundary conservation agreement that includes a consensus on bilateral exchange mechanisms, scientific research and monitoring goals, local community development, cooperation to prevent the hunting of endangered species and cross-border forest fires. These actions will contribute to the long-term conservation and survival of this Critically Endangered species.


Assuntos
Colobinae , Presbytini , Animais , Aniversários e Eventos Especiais , China , Espécies em Perigo de Extinção , Densidade Demográfica
7.
Angew Chem Int Ed Engl ; 61(49): e202206802, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36224515

RESUMO

Core fucosylation, the attachment of α1,6-fucose to the innermost N-acetylglucosamine (GlcNAc) residue of N-glycans, has a strong relationship with tumor growth, invasion, metastasis, prognosis, and immune evasion by regulating many membrane proteins. However, details about the functional mechanism are still largely unknown due to the lack of an effective analytical method to identify cell-surface core-fucosylated glycoproteins, and especially glycosylation sites. Here, we developed a sensitive and reversible labeling strategy for probing core fucosylation, by which core-fucosylated glycoproteins that located on cell-surface were selectively tagged by a biotinylated probe with high sensitivity. The labeled probe can be further broken enzymatically after the capture by affinity resin. The on-bead traceless cleavage allowed the global mapping of core-fucosylated glycoproteins and glycosylation sites by mass spectrometry (MS). The profile of core-fucosylated glycoproteome provides an in-depth understanding of the biological functions of core fucosylation.


Assuntos
Fucose , Glicoproteínas , Glicosilação , Fucose/química , Glicoproteínas/química , Espectrometria de Massas/métodos , Acetilglucosamina/química , Polissacarídeos/química , Proteoma/metabolismo
8.
Angew Chem Int Ed Engl ; 60(50): 26128-26135, 2021 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-34590401

RESUMO

O-linked N-acetylglucosamine (O-GlcNAcylation) is a ubiquitous post-translational modification of proteins that is essential for cell function. Perturbation of O-GlcNAcylation leads to altered cell-cycle progression and DNA damage response. However, the underlying mechanisms are poorly understood. Here, we develop a highly sensitive one-step enzymatic strategy for capture and profiling O-GlcNAcylated proteins in cells. Using this strategy, we discover that flap endonuclease 1 (FEN1), an essential enzyme in DNA synthesis, is a novel substrate for O-GlcNAcylation. FEN1 O-GlcNAcylation is dynamically regulated during the cell cycle. O-GlcNAcylation at the serine 352 of FEN1 disrupts its interaction with Proliferating Cell Nuclear Antigen (PCNA) at the replication foci, and leads to altered cell cycle, defects in DNA replication, accumulation of DNA damage, and enhanced sensitivity to DNA damage agents. Thus, our study provides a sensitive method for profiling O-GlcNAcylated proteins, and reveals an unknown mechanism of O-GlcNAcylation in regulating cell cycle progression and DNA damage response.


Assuntos
Acetilglucosamina/metabolismo , DNA/metabolismo , Endonucleases Flap/metabolismo , Acetilglucosamina/química , Ciclo Celular , DNA/química , Dano ao DNA , Endonucleases Flap/química , Glicosilação , Humanos
9.
J Exp Bot ; 70(12): 3165-3176, 2019 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-30958883

RESUMO

Auxin plays central roles in rhizobial infection and nodule development in legumes. However, the sources of auxin during nodulation are unknown. In this study, we analyzed the YUCCA (YUC) gene family of soybean and identified GmYUC2a as an important regulator of auxin biosynthesis that modulates nodulation. Following rhizobial infection, GmYUC2a exhibited increased expression in various nodule tissues. Overexpression of GmYUC2a (35S::GmYUC2a) increased auxin production in soybean, resulting in severe growth defects in root hairs and root development. Upon rhizobial infection, 35S::GmYUC2a hairy roots displayed altered patterns of root hair deformation and nodule formation. Root hair deformation occurred mainly on primary roots, and nodules formed exclusively on primary roots of 35S::GmYUC2a plants. Moreover, transgenic 35S::GmYUC2a composite plants showed delayed nodule development and a reduced number of nodules. Our results suggest that GmYUC2a plays an important role in regulating both root growth and nodulation by modulating auxin balance in soybean.


Assuntos
Glycine max/genética , Ácidos Indolacéticos/metabolismo , Oxigenases de Função Mista/genética , Proteínas de Plantas/genética , Nodulação , Raízes de Plantas/crescimento & desenvolvimento , Oxigenases de Função Mista/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Raízes de Plantas/genética , Glycine max/crescimento & desenvolvimento , Glycine max/metabolismo
10.
Plant J ; 91(6): 1108-1128, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28654223

RESUMO

Pomegranate (Punica granatum L.) is a perennial fruit crop grown since ancient times that has been planted worldwide and is known for its functional metabolites, particularly punicalagins. We have sequenced and assembled the pomegranate genome with 328 Mb anchored into nine pseudo-chromosomes and annotated 29 229 gene models. A Myrtales lineage-specific whole-genome duplication event was detected that occurred in the common ancestor before the divergence of pomegranate and Eucalyptus. Repetitive sequences accounted for 46.1% of the assembled genome. We found that the integument development gene INNER NO OUTER (INO) was under positive selection and potentially contributed to the development of the fleshy outer layer of the seed coat, an edible part of pomegranate fruit. The genes encoding the enzymes for synthesis and degradation of lignin, hemicelluloses and cellulose were also differentially expressed between soft- and hard-seeded varieties, reflecting differences in their accumulation in cultivars differing in seed hardness. Candidate genes for punicalagin biosynthesis were identified and their expression patterns indicated that gallic acid synthesis in tissues could follow different biochemical pathways. The genome sequence of pomegranate provides a valuable resource for the dissection of many biological and biochemical traits and also provides important insights for the acceleration of breeding. Elucidation of the biochemical pathway(s) involved in punicalagin biosynthesis could assist breeding efforts to increase production of this bioactive compound.


Assuntos
Genoma de Planta/genética , Genômica , Taninos Hidrolisáveis/metabolismo , Lythraceae/genética , Sequência de Aminoácidos , Vias Biossintéticas , Frutas/genética , Frutas/metabolismo , Lignina/metabolismo , Lythraceae/metabolismo , Anotação de Sequência Molecular , Fenótipo , Alinhamento de Sequência
11.
New Phytol ; 215(2): 672-686, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28598036

RESUMO

Auxins play important roles in the nodulation of legumes. However, the mechanism by which auxin signaling regulates root nodulation is largely unknown. In particular, the role of auxin receptors and their regulation in determinate nodule development remains elusive. We checked the expression pattern of the auxin receptor GmTIR1/GmAFB3 genes in soybean. We analyzed the functions of GmTIR1/AFB3 in the regulation of rhizobial infection and nodule number, and also tested the functions of miR393 during nodulation and its relationship with GmTIR1/AFB3. The results showed that GmTIR1 and GmAFB3 genes exhibit diverse expression patterns during nodulation and overexpression of GmTIR1 genes significantly increased inflection foci and eventual nodule number. GmTIR1/AFB3 genes were post-transcriptionally cleaved by miR393 family and knock-down of the miR393 family members significantly increased rhizobial infection and the nodule number. Overexpression of the mutated form of GmTIR1C at the miR393 cleavage site that is resistant to miR393 cleavage led to a further increase in the number of infection foci and nodules, suggesting that miR393s modulate nodulation by directly targeting GmTIR1C. This study demonstrated that GmTIR1- and GmAFB3-mediated auxin signaling, that is spatio-temporally regulated by miR393, plays a crucial role in determinate nodule development in soybean.


Assuntos
Glycine max/genética , Glycine max/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Nodulação/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Família Multigênica , Proteínas de Plantas/genética , Nodulação/fisiologia , Plantas Geneticamente Modificadas
12.
Plant Cell ; 26(12): 4782-801, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25549672

RESUMO

MicroRNAs are noncoding RNAs that act as master regulators to modulate various biological processes by posttranscriptionally repressing their target genes. Repression of their target mRNA(s) can modulate signaling cascades and subsequent cellular events. Recently, a role for miR172 in soybean (Glycine max) nodulation has been described; however, the molecular mechanism through which miR172 acts to regulate nodulation has yet to be explored. Here, we demonstrate that soybean miR172c modulates both rhizobium infection and nodule organogenesis. miR172c was induced in soybean roots inoculated with either compatible Bradyrhizobium japonicum or lipooligosaccharide Nod factor and was highly upregulated during nodule development. Reduced activity and overexpression of miR172c caused dramatic changes in nodule initiation and nodule number. We show that soybean miR172c regulates nodule formation by repressing its target gene, Nodule Number Control1, which encodes a protein that directly targets the promoter of the early nodulin gene, ENOD40. Interestingly, transcriptional levels of miR172c were regulated by both Nod Factor Receptor1α/5α-mediated activation and by autoregulation of nodulation-mediated inhibition. Thus, we established a direct link between miR172c and the Nod factor signaling pathway in addition to adding a new layer to the precise nodulation regulation mechanism of soybean.


Assuntos
Bradyrhizobium/fisiologia , Glycine max/genética , MicroRNAs/fisiologia , Nodulação/genética , Sequência de Bases , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , MicroRNAs/metabolismo , Dados de Sequência Molecular , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Alinhamento de Sequência , Análise de Sequência de RNA , Transdução de Sinais , Glycine max/metabolismo , Glycine max/microbiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia
13.
Bioorg Med Chem Lett ; 27(13): 2943-2945, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28501514

RESUMO

Among 18 human histone deacetylases (HDAC), HDAC11 is least studied. MS275, a benzamide HDAC inhibitor (HDACi), was stereotypically considered to selectively target Class I HDACs. We verified this slow-binding inhibitor also targeted HDAC11. In a traditional enzyme based assay, MS275 at low concentrations surprisingly behaved as an agonist. This was attributed to the poor stability of HDAC11 which lost 40% activity in 3h at 37°C. By adding 0.2µM SAHA, HDAC11 activity was stabilized during the 3-h assay period. Since 0.2µM SAHA inhibited 50% HDAC11 activity, the apparent IC50' of MS275 was adjusted to the true IC50=0.65µM. Finally, the new method demonstrated its superiority in one-dose-screening assays by decreasing false negative results. This work highlighted an optimized strategy to assay slow-binding inhibitors of unstable proteins with known fast-binding inhibitors. It should be especially useful in a hit-discovery stage to find moderate potent compounds.


Assuntos
Benzamidas/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/química , Histona Desacetilases/metabolismo , Benzamidas/química , Relação Dose-Resposta a Droga , Estabilidade Enzimática/efeitos dos fármacos , Inibidores de Histona Desacetilases/química , Estrutura Molecular , Relação Estrutura-Atividade
14.
Plant Physiol ; 168(3): 984-99, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25941314

RESUMO

Legume root nodules convert atmospheric nitrogen gas into ammonium through symbiosis with a prokaryotic microsymbiont broadly called rhizobia. Auxin signaling is required for determinant nodule development; however, the molecular mechanism of auxin-mediated nodule formation remains largely unknown. Here, we show in soybean (Glycine max) that the microRNA miR167 acts as a positive regulator of lateral root organs, namely nodules and lateral roots. miR167c expression was up-regulated in the vasculature, pericycle, and cortex of soybean roots following inoculation with Bradyrhizobium japonicum strain USDA110 (the microsymbiont). It was found to positively regulate nodule numbers directly by repressing the target genes GmARF8a and GmARF8b (homologous genes of Arabidopsis [Arabidopsis thaliana] AtARF8 that encode auxin response factors). Moreover, the expression of miR167 and its targets was up- and down-regulated by auxin, respectively. The miR167-GmARF8 module also positively regulated nodulation efficiency under low microsymbiont density, a condition often associated with environmental stress. The regulatory role of miR167 on nodule initiation was dependent on the Nod factor receptor GmNFR1α, and it acts upstream of the nodulation-associated genes nodule inception, nodulation signaling pathway1, early nodulin40-1, NF-YA1 (previously known as HAEM activator protein2-1), and NF-YA2. miR167 also promoted lateral root numbers. Collectively, our findings establish a key role for the miR167-GmARF8 module in auxin-mediated nodule and lateral root formation in soybean.


Assuntos
Regulação da Expressão Gênica de Plantas , Glycine max/crescimento & desenvolvimento , Glycine max/genética , Ácidos Indolacéticos/metabolismo , MicroRNAs/metabolismo , Proteínas de Plantas/genética , Nodulação/genética , Bradyrhizobium/fisiologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes de Plantas , Ácidos Indolacéticos/farmacologia , MicroRNAs/genética , Modelos Biológicos , Proteínas de Plantas/metabolismo , Nodulação/efeitos dos fármacos , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Reprodutibilidade dos Testes , Glycine max/metabolismo , Glycine max/microbiologia
15.
Bioorg Med Chem Lett ; 26(10): 2434-2437, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-27055940

RESUMO

This work demonstrated the high efficiency of a sub-milligram-synthesis based medicinal chemistry method. Totally 72 compounds, consisting a tri-substituted pyrrolidine core, were prepared. Around 0.1mg of each compound was solid-phase synthesized. Based on the additive property of UV absorptions of unconjugated chromophores of a molecule, these compounds were quantified by UV measurement. A hit, whose IC50 value was 1.2µM in HDAC11 inhibition assays, highlights the applicability of the approach reported here in future optimization works.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/metabolismo , Animais , Histona Desacetilases/química , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Células Sf9 , Técnicas de Síntese em Fase Sólida , Espectrofotometria Ultravioleta , Relação Estrutura-Atividade
16.
Curr Opin Chem Biol ; 80: 102460, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38678979

RESUMO

Protein glycosylation is one of the most common and important post-translational modifications of proteins involved in regulating glycoprotein functions. The chemoenzymatic glycan labeling strategy allows rapid, efficient, and selective interrogation of glycoproteins. Glycoproteomics identifies protein glycosylation events at a large scale, providing information such as peptide sequences, glycan structures, and glycosylated sites. This review discusses the recent development of chemoenzymatic labeling strategies for glycoprotein analysis, mainly including glycoprotein and glycosite profiling. Furthermore, we highlight the chemoenzymatic enrichment approaches in mass spectrometry analysis for three classes of glycan modifications, including N-glycosylation, O-GlcNAcylation, and mucin-type O-glycosylation. Finally, we highlight the emerging trends in new tools and cutting-edge technologies available for glycoproteomic research.


Assuntos
Glicoproteínas , Proteômica , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/química , Humanos , Proteômica/métodos , Polissacarídeos/metabolismo , Polissacarídeos/química , Processamento de Proteína Pós-Traducional , Animais , Espectrometria de Massas/métodos , Coloração e Rotulagem/métodos
17.
JACS Au ; 4(5): 2005-2018, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38818065

RESUMO

Core fucosylation, a special type of N-linked glycosylation, is important in tumor proliferation, invasion, metastatic potential, and therapy resistance. However, the core-fucosylated glycoproteome has not been extensively profiled due to the low abundance and poor ionization efficiency of glycosylated peptides. Here, a "one-step" strategy has been described for protein core-fucosylation characterization in biological samples. Core-fucosylated peptides can be selectively labeled with a glycosylated probe, which is linked with a temperature-sensitive poly(N-isopropylacrylamide) (PNIPAM) polymer, by mutant endoglycosidase (EndoF3-D165A). The labeled probe can be further removed by wild-type endoglycosidase (EndoF3) in a traceless manner for mass spectrometry (MS) analysis. The feasibility and effectiveness of the "one-step" strategy are evaluated in bovine serum albumin (BSA) spiked with standard core-fucosylated peptides, H1299, and Jurkat cell lines. The "one-step" strategy is then employed to characterize core-fucosylated sites in human lung adenocarcinoma, resulting in the identification of 2494 core-fucosylated sites distributed on 1176 glycoproteins. Further data analysis reveals that 196 core-fucosylated sites are significantly upregulated in tumors, which may serve as potential drug development targets or diagnostic biomarkers. Together, this "one-step" strategy has great potential for use in global and in-depth analysis of the core-fucosylated glycoproteome to promote its mechanism research.

18.
J Biomed Mater Res A ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39228141

RESUMO

Early healing of bone defects is still a clinical challenge. Many bone-filling materials have been studied, among which photocrosslinked alginate has received significant attention due to its good biocompatibility and morphological plasticity. Although it has been confirmed that photocrosslinked alginate can be used as an extracellular matrix for 3D cell culture, it lacks osteogenesis-related biological functions. This study constructed a copper ions-photo dual-crosslinked alginate hydrogel scaffold by controlling the copper ion concentration. The scaffolds were shaped by photocrosslinking and then endowed with biological functions by copper ions crosslinking. According to in vitro research, the dual-crosslinked hydrogel increased the compressive strength and favored copper dose-dependent osteoblast differentiation and cell surface adherence of rat bone marrow mesenchymal stem cells and the expression of type I collagen (Col1), runt-related transcription factor 2 (Runx2), osteocalcin (OCN), vascular endothelial growth factor (VEGF). In addition, hydrogel scaffolds were implanted into rat skull defects, and more angiogenesis and osteogenesis could be observed in in vivo studies. The above results show that the copper-photo-crosslinked hydrogel scaffold has excellent osseointegration properties and can potentially promote angiogenesis and early healing of bone defects, providing a reference solution for bone tissue engineering materials.

19.
Adv Sci (Weinh) ; 11(24): e2308522, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38582526

RESUMO

Glycans are complex biomolecules that encode rich information and regulate various biological processes, such as fertilization, host-pathogen binding, and immune recognition, through interactions with glycan-binding proteins. A key driving force for glycan-protein recognition is the interaction between the π electron density of aromatic amino acid side chains and polarized C─H groups of the pyranose (termed the CH-π interaction). However, the relatively weak binding affinity between glycans and proteins has hindered the application of glycan detection and imaging. Here, computational modeling and molecular dynamics simulations are employed to design a chemical strategy that enhances the CH-π interaction between glycans and proteins by genetically incorporating electron-rich tryptophan derivatives into a lectin PhoSL, which specifically recognizes core fucosylated N-linked glycans. This significantly enhances the binding affinity of PhoSL with the core fucose ligand and enables sensitive detection and imaging of core fucosylated glycans in vitro and in xenograft tumors in mice. Further, the study showed that this strategy is applicable to improve the binding affinity of GafD lectin for N-acetylglucosamine-containing glycans. The approach thus provides a general and effective way to manipulate glycan-protein recognition for glycoscience applications.


Assuntos
Polissacarídeos , Polissacarídeos/metabolismo , Polissacarídeos/química , Animais , Camundongos , Simulação de Dinâmica Molecular , Lectinas/metabolismo , Lectinas/química , Ligação Proteica , Humanos , Modelos Animais de Doenças
20.
Nat Commun ; 15(1): 5163, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886381

RESUMO

As the most abundant organic substances in nature, carbohydrates are essential for life. Understanding how carbohydrates regulate proteins in the physiological and pathological processes presents opportunities to address crucial biological problems and develop new therapeutics. However, the diversity and complexity of carbohydrates pose a challenge in experimentally identifying the sites where carbohydrates bind to and act on proteins. Here, we introduce a deep learning model, DeepGlycanSite, capable of accurately predicting carbohydrate-binding sites on a given protein structure. Incorporating geometric and evolutionary features of proteins into a deep equivariant graph neural network with the transformer architecture, DeepGlycanSite remarkably outperforms previous state-of-the-art methods and effectively predicts binding sites for diverse carbohydrates. Integrating with a mutagenesis study, DeepGlycanSite reveals the guanosine-5'-diphosphate-sugar-recognition site of an important G-protein coupled receptor. These findings demonstrate DeepGlycanSite is invaluable for carbohydrate-binding site prediction and could provide insights into molecular mechanisms underlying carbohydrate-regulation of therapeutically important proteins.


Assuntos
Aprendizado Profundo , Sítios de Ligação , Carboidratos/química , Ligação Proteica , Redes Neurais de Computação , Humanos , Proteínas/metabolismo , Proteínas/química , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA