Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 95(22): 8735-8743, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37218037

RESUMO

Liquid biopsy technology involves taking samples from body fluids in a minimally invasive way and analyzing tumor markers to achieve early diagnosis and efficacy evaluation of tumors. The development of real-time cancer diagnosis and treatment strategies based on liquid biopsy technology is of great significance to cancer management. This paper described an extracorporeal circulation based on a three-dimensional (3D) magnetic chip (3DMC-system) for in vivo detection and real-time monitoring of circulating tumor cells (CTCs). Utilizing biofunctionalized magnetic nanospheres (MNs) with CTC recognition function, this 3DMC-system could effectively achieve the real-time monitoring of CTCs in vivo with good stability and strong anti-interference. Compared with in vitro CTC detection, in vivo detection could not only detect more CTCs but also detect the presence of CTCs in the blood at an early stage of the tumor, when tumor metastasis is not observed in imaging. In addition, due to the flexibility of the chip design, the system can easily add a treatment module to integrate cancer diagnosis and treatment together. With good biocompatibility and high stability, this 3DMC-system is expected to provide a new personalized medical program for cancer patients.


Assuntos
Células Neoplásicas Circulantes , Humanos , Células Neoplásicas Circulantes/patologia , Fenômenos Magnéticos , Circulação Extracorpórea , Biomarcadores Tumorais
2.
Anal Chem ; 94(23): 8392-8398, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35657751

RESUMO

Single-nanoparticle collision electrochemistry (SNCE) has gradually become an attractive analytical method due to its advantages in analytical detection, such as a fast response, low cost, low sample consumption, and in situ real-time detection of analytes. However, the biological analyte's direct detection based on the SNCE blocking mode has the problems of low sensitivity and specificity. In this work, an SNCE biosensor based on SNCE electrocatalytic strategy was used for the detection of H7N9 AIV. Nucleic acid aptamers were introduced to recognize the target virus (H7N9 AIV). After the recognition event, ssDNA1 was released and hybridized with another ssDNA2. Owing to the nicking endonuclease Nt.AlwI-mediated target nucleic acid cyclic amplification, one virus particle can indirectly induce the release of 4.2 × 106 Au NPs that can be counted by the SNCE electrocatalytic strategy. The high conversion efficiency greatly improved the detection sensitivity, and the detection limit was as low as 24.3 fg/mL. Therefore, the constructed biosensor can achieve a highly sensitive and specific detection of H7N9 AIV and show a great potential in bioanalytical application.


Assuntos
Técnicas Biossensoriais , Subtipo H7N9 do Vírus da Influenza A , Influenza Aviária , Nanopartículas , Ácidos Nucleicos , Animais , Técnicas Biossensoriais/métodos , Eletroquímica
3.
Chembiochem ; 19(7): 716-722, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29356232

RESUMO

A new modular nanoswitch was described for versatile, rapid (within 1 h), homogeneous, and sensitive protein detection. The system employs two hairpins (HP1 and HP2) that can be reciprocally recognized through the apical loop-loop interaction. HP2 possesses a conformation-switching stem-loop structure, with appended single-stranded tails on each end, which can hybridize with the recognition-element-conjugated DNA strands to construct a protein-responsive HP2 scaffold. It works according to a simple mix-and-detect assay format, with the first formation of a kissing complex between HP1 and HP2 scaffolds for fluorescence quenching, and then cascade propagation from steric strain through protein binding to the dissociation of the kissing complex for fluorescence recovery. The detection universality of such a modular nanoswitch was demonstrated by using three multivalent proteins, including anti-digoxigenin (Anti-Dig) antibody, streptavidin, and thrombin, with detection limits of 0.33, 0.17, and 0.5 nm, respectively.


Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , DNA/química , Proteínas/análise , RNA/química , Anticorpos/análise , Anticorpos/metabolismo , Aptâmeros de Nucleotídeos/metabolismo , Biotina/metabolismo , DNA/genética , Fluorescência , Ouro/química , Sequências Repetidas Invertidas , Limite de Detecção , Nanopartículas Metálicas/química , Hibridização de Ácido Nucleico , Ligação Proteica , Proteínas/metabolismo , RNA/genética , Estreptavidina/análise , Estreptavidina/metabolismo , Trombina/análise , Trombina/metabolismo
4.
Biofabrication ; 16(2)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38437712

RESUMO

Adoptive T-cell transfer for cancer therapy is limited by the inefficiency ofin vitroT-cell expansion and the ability ofin vivoT-cells to infiltrate tumors. The construction of multifunctional artificial antigen-presenting cells is a promising but challenging approach to achieve this goal. In this study, a multifunctional artificial antigen-presenting gel droplet (AAPGD) was designed. Its surface provides regulated T-cell receptor (TCR) stimulation and co-stimulation signals and is capable of slow release of mitogenic cytokines and collagen mimetic peptide. The highly uniform AAPGD are generated by a facile method based on standard droplet microfluidic devices. The results of the study indicate that, T-cell proliferatedin vitroutilizing AAPGD have a fast rate and high activity. AAPGD increased the proportion ofin vitroproliferating T cells low differentiation and specificity. The starting number of AAPGDs and the quality ratio of TCR-stimulated and co-stimulated signals on the surface have a large impact on the rapid proliferation of low-differentiated T cellsin vitro. During reinfusion therapy, AAPGD also enhanced T-cell infiltration into the tumor site. In experiments using AAPGD for adoptive T cell therapy in melanoma mice, tumor growth was inhibited, eliciting a potent cytotoxic T-lymphocyte immune response and improving mouse survival. In conclusion, AAPGD promotes rapid low-differentiation proliferation of T cellsin vitroand enhances T cell infiltration of tumorsin vivo. It simplifies the preparation steps of adoptive cell therapy, improves the therapeutic effect, and provides a new pathway for overdosing T cells to treat solid tumors.


Assuntos
Imunoterapia Adotiva , Melanoma , Camundongos , Animais , Imunoterapia Adotiva/métodos , Microfluídica , Melanoma/patologia , Melanoma/terapia , Receptores de Antígenos de Linfócitos T , Terapia Baseada em Transplante de Células e Tecidos
5.
Micromachines (Basel) ; 14(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37421109

RESUMO

Adoptive cell therapy (ACT) is a personalized therapy that has shown great success in treating hematologic malignancies in clinic, and has also demonstrated potential applications for solid tumors. The process of ACT involves multiple steps, including the separation of desired cells from patient tissues, cell engineering by virus vector systems, and infusion back into patients after strict tests to guarantee the quality and safety of the products. ACT is an innovative medicine in development; however, the multi-step method is time-consuming and costly, and the preparation of the targeted adoptive cells remains a challenge. Microfluidic chips are a novel platform with the advantages of manipulating fluid in micro/nano scales, and have been developed for various biological research applications as well as ACT. The use of microfluidics to isolate, screen, and incubate cells in vitro has the advantages of high throughput, low cell damage, and fast amplification rates, which can greatly simplify ACT preparation steps and reduce costs. Moreover, the customizable microfluidic chips fit the personalized demands of ACT. In this mini-review, we describe the advantages and applications of microfluidic chips for cell sorting, cell screening, and cell culture in ACT compared to other existing methods. Finally, we discuss the challenges and potential outcomes of future microfluidics-related work in ACT.

6.
Lab Chip ; 21(22): 4414-4426, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34676383

RESUMO

Among the numerous forms of cancer immunotherapy, cancer vaccines have attracted increasing attention because of their ability to elicit sustained antitumor immune responses and durable tumor regression. Here, a personalized gel-droplet monocyte vaccine (GEMA) derived from host blood was reported. A streamlined microfluidic vaccine production platform was designed to combine the separation of monocytes from host blood and the encapsulation of monocytes in an alginate gel droplet, which simplified the handling of the blood product and permitted the rapid preparation of vaccines. In addition, the application of alginate gel encapsulation not only improved the efficiency of antigen uptake by monocytes, but it also promoted the production of antigen-specific CD8+ T cells in the spleen, resulting in an intense cytotoxic T lymphocyte (CTL) response. Moreover, depending on the disease profile of a specific patient, different adjuvant- and antigen-loaded monocytes could be simultaneously encapsulated in gel droplets to prepare a cocktail vaccine based on patient needs. In this study, anti-PD-1 antibodies were encapsulated in gel droplets as a model adjuvant to obtain a cocktail vaccine, and this demonstrated enhanced antitumor efficacy in a 4T1 breast tumor model. In summary, this study provided a unique vaccine production strategy and an efficient combination therapy approach, holding great promise for the development of personalized cancer vaccines.


Assuntos
Neoplasias da Mama , Vacinas Anticâncer , Alginatos , Linfócitos T CD8-Positivos , Células Dendríticas , Feminino , Humanos , Imunoterapia , Monócitos
7.
Nanomaterials (Basel) ; 9(1)2019 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-30669286

RESUMO

Development of simple, convenient, and sensitive assay methods for pyrophosphatase (PPase) activity is of importance, for disease diagnosis and drug discovery. Herein, a simple, rapid, label-free, and sensitive fluorescence sensor for PPase activity assay is developed, using Cu2+ doping-induced quantum dot (QD) photoluminescence as a signal reporter. The Cu2+ doping of ZnSe QD can induce a dopant-dependent emission response, which will be inhibited after the premixing of Cu2+ with pyrophosphate (PPi), to form a Cu2+-PPi complex. Then, the hydrolysis of PPi into phosphate (Pi), specifically catalyzed by PPase, liberates the free Cu2+ to regain the QD doping for the fluorescence response, which is highly dependent on the PPase activity. The PPase can be sensitively and selectively assayed, with a detection limit of 0.1 mU/mL. The developed sensing strategy can be also employed for the PPase inhibitor screening. Thus, the current QD doping-based sensing strategy offers an efficient and promising avenue for Cu2+, PPi, or PPase-related target analysis, and might hold great potential for the further applications in the clinical disease diagnosis.

8.
ACS Sens ; 3(7): 1401-1408, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29905068

RESUMO

Herein, a general protein conversion and analysis strategy was developed for homogeneous, label-free, and sensitive protein detection, on the basis of the affinity binding-induced Hg2+ release for protein conversion, and the succeeding Hg2+ doping-induced ZnSe quantum dot (QD) photoluminescence for signal readout. Two DNA motifs were designed, each of which was conjugated with a protein-specific recognition ligand. The mercury ions were initially introduced into one DNA motif by T-Hg2+-T interaction. The Hg2+ releasing was then accomplished after protein recognition-initiated strand exchange reaction between two DNA motifs. Then, the simultaneous incorporation of the released Hg2+ into ZnSe QD resulted in a doping-dependent fluorescence emission at 560 nm correlated with protein analysis. The protein assay is outperformed only by a simple one-step mixing operation but no separation or washing steps. Also, the use of doped QD as a fluorogenic reporter can avoid the fluorophore and/or quencher labeling, and eliminate complex DNA manipulation procedures for signal readout or amplification involved in most existing nucleic acid-based protein conversion and analysis methods. The versatile and sensitive detection toward multivalent proteins was verified with the detection limits achieved at 0.034 nM for anti-Dig antibody, 0.012 nM for streptavidin, and 0.025 nM for thrombin. Thus, it shows great promise for protein analysis to accommodate the applications in disease diagnosis, biomarker screening, and clinical medicine.


Assuntos
Anticorpos/análise , Técnicas Biossensoriais/métodos , Mercúrio/química , Pontos Quânticos/química , Estreptavidina/análise , Trombina/análise , Animais , Cátions Bivalentes/química , DNA/química , Humanos , Compostos de Selênio/química , Espectrometria de Fluorescência/métodos , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA