Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 24(1): 362, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37752445

RESUMO

BACKGROUND: The central biological clock governs numerous facets of mammalian physiology, including sleep, metabolism, and immune system regulation. Understanding gene regulatory relationships is crucial for unravelling the mechanisms that underlie various cellular biological processes. While it is possible to infer circadian gene regulatory relationships from time-series gene expression data, relying solely on correlation-based inference may not provide sufficient information about causation. Moreover, gene expression data often have high dimensions but a limited number of observations, posing challenges in their analysis. METHODS: In this paper, we introduce a new hybrid framework, referred to as Circadian Gene Regulatory Framework (CGRF), to infer circadian gene regulatory relationships from gene expression data of rats. The framework addresses the challenges of high-dimensional data by combining the fuzzy C-means clustering algorithm with dynamic time warping distance. Through this approach, we efficiently identify the clusters of genes related to the target gene. To determine the significance of genes within a specific cluster, we employ the Wilcoxon signed-rank test. Subsequently, we use a dynamic vector autoregressive method to analyze the selected significant gene expression profiles and reveal directed causal regulatory relationships based on partial correlation. CONCLUSION: The proposed CGRF framework offers a comprehensive and efficient solution for understanding circadian gene regulation. Circadian gene regulatory relationships are inferred from the gene expression data of rats based on the Aanat target gene. The results show that genes Pde10a, Atp7b, Prok2, Per1, Rhobtb3 and Dclk1 stand out, which have been known to be essential for the regulation of circadian activity. The potential relationships between genes Tspan15, Eprs, Eml5 and Fsbp with a circadian rhythm need further experimental research.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ratos , Animais , Perfilação da Expressão Gênica/métodos , Fatores de Transcrição/metabolismo , Algoritmos , Ritmo Circadiano/genética , Expressão Gênica , Mamíferos/genética
2.
IEEE Trans Cybern ; 53(2): 1063-1077, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34495861

RESUMO

Cyber-physical systems (CPSs) seamlessly integrate communication, computing, and control, thus exhibiting tight coupling of their cyber space with the physical world and human intervention. Forming the basis of future smart services, they play an important role in the era of Industry 4.0. However, CPSs also suffer from increasing cyber attacks due to their connections to the Internet. This article investigates resilient control for a class of CPSs subject to actuator attacks, which intentionally manipulate control commands from controllers to actuators. In our study, the supertwisting sliding-mode algorithm is adopted to construct a finite-time converging extended state observer (ESO) for estimating the state and uncertainty of the system in the presence of actuator attacks. Then, for the attacked system, a finite-time converging resilient controller is designed based on the proposed ESO. It integrates global fast terminal sliding-mode and prescribed performance control. Finally, an industrial CPS, permanent magnet synchronous motor control system, is investigated to demonstrate the effectiveness of the composite resilient control strategy presented in this article.

3.
IEEE Trans Cybern ; 53(7): 4677-4690, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34962892

RESUMO

Neural dynamic surface control (NDSC) is an effective technique for the tracking control of nonlinear systems. The objective of this article is to improve closed-loop transient performance and reduce the number of learning parameters for a strict-feedback nonlinear system with unknown control gains. For this purpose, a predictor-based NDSC (PNDSC) approach is presented. It introduces Nussbaum functions and predictors into the traditional NDSC for nonlinear systems with unknown control gains. Unlike NDSC that uses surface errors to update the learning parameters of neural networks (NNs), the PNDSC employs prediction errors for the same purpose, leading to improved transient performance of closed-loop control systems. To reduce the number of learning parameters, the PNDSC is further embedded with the technique of the minimal number of learning parameters (MNLPs). This avoids the problem of the "explosion of learning parameters" as the order of the system increases. A Lyapunov-based stability analysis shows that all signals are bounded in the closed-loop systems under PNDSC embedded with MNLPs. Simulations are conducted to demonstrate the effectiveness of the PNDSC approach presented in this article.


Assuntos
Algoritmos , Dinâmica não Linear , Simulação por Computador , Retroalimentação , Redes Neurais de Computação
4.
IEEE Trans Cybern ; 51(6): 2916-2928, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32324585

RESUMO

Consensus control of multiagent systems (MASs) has applications in various domains. As MASs work in networked environments, their security control becomes critically desirable in response to various cyberattacks, such as denial of service (DoS). Efforts have been made in the development of both time- and event-triggered consensus control of MASs. However, there is a lack of precise calculation of control input during the attacking periods. To address this issue, a distributed secure consensus control with event triggering is developed for linear leader-following MASs under DoS attacks. It is designed with a dual-terminal event-triggered mechanism, which schedules information transmission through two triggered functions for each follower: one on the measurement channel (sensor-to-controller) and the other on the control channel (controller-to-actuator). To deal with DoS attacks, the combined states in the triggered functions are replaced by their estimations from an observer. Sufficient conditions are established for the duration and frequency of DoS attacks. To remove continuous monitoring of the measurement errors, a self-triggered secure control scheme is further developed, which combines the system states and other information at past triggered instants. Theoretical analysis shows that the followers in MASs under DoS attacks are able to track the leader and meanwhile the Zeno behavior is excluded. Case studies are conducted to demonstrate the effectiveness of our distributed secure consensus control of MASs.

5.
Phys Rev E ; 103(4-1): 043303, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005996

RESUMO

Among various algorithms of multifractal analysis (MFA) for complex networks, the sandbox MFA algorithm behaves with the best computational efficiency. However, the existing sandbox algorithm is still computationally expensive for MFA of large-scale networks with tens of millions of nodes. It is also not clear whether MFA results can be improved by a largely increased size of a theoretical network. To tackle these challenges, a computationally efficient sandbox algorithm (CESA) is presented in this paper for MFA of large-scale networks. Distinct from the existing sandbox algorithm that uses the shortest-path distance matrix to obtain the required information for MFA of networks, our CESA employs the compressed sparse row format of the adjacency matrix and the breadth-first search technique to directly search the neighbor nodes of each layer of center nodes, and then to retrieve the required information. A theoretical analysis reveals that the CESA reduces the time complexity of the existing sandbox algorithm from cubic to quadratic, and also improves the space complexity from quadratic to linear. Then the CESA is demonstrated to be effective, efficient, and feasible through the MFA results of (u,v)-flower model networks from the fifth to the 12th generations. It enables us to study the multifractality of networks of the size of about 11 million nodes with a normal desktop computer. Furthermore, we have also found that increasing the size of (u,v)-flower model network does improve the accuracy of MFA results. Finally, our CESA is applied to a few typical real-world networks of large scale.

6.
IEEE Trans Neural Netw Learn Syst ; 31(9): 3334-3345, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-31634849

RESUMO

This article presents a secure communication scheme based on the quantized synchronization of master-slave neural networks under an event-triggered strategy. First, a dynamic event-triggered strategy is proposed based on a quantized output feedback, for which a quantized output feedback controller is formed. Second, theoretical criteria are derived to ensure the bounded synchronization of master-slave neural networks. With these criteria, an explicit upper bound is given for the synchronization error. Sufficient conditions are also provided on the existence of quantized output feedback controllers. A Chua's circuit is chosen to illustrate the effectiveness of our theoretical results. Third, a secure communication scheme is presented based on the synchronization of master-slave neural networks by combining the basic principle of cryptology. Then, a secure image communication is studied to verify the feasibility and security performance of the proposed secure communication scheme. The impact of the quantization level and the event-triggered control (ETC) on image decryption is investigated through experiments.

7.
IEEE Trans Neural Netw Learn Syst ; 29(6): 2488-2501, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28500011

RESUMO

Continuous-time semi-Markovian jump neural networks (semi-MJNNs) are those MJNNs whose transition rates are not constant but depend on the random sojourn time. Addressing stochastic synchronization of semi-MJNNs with time-varying delay, an improved stochastic stability criterion is derived in this paper to guarantee stochastic synchronization of the response systems with the drive systems. This is achieved through constructing a semi-Markovian Lyapunov-Krasovskii functional together as well as making use of a novel integral inequality and the characteristics of cumulative distribution functions. Then, with a linearization procedure, controller synthesis is carried out for stochastic synchronization of the drive-response systems. The desired state-feedback controller gains can be determined by solving a linear matrix inequality-based optimization problem. Simulation studies are carried out to demonstrate the effectiveness and less conservatism of the presented approach.

8.
Sensors (Basel) ; 7(10): 2157-2173, 2007 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-28903220

RESUMO

Wireless sensor/actuator networks (WSANs) are emerging as a new generationof sensor networks. Serving as the backbone of control applications, WSANs will enablean unprecedented degree of distributed and mobile control. However, the unreliability ofwireless communications and the real-time requirements of control applications raise greatchallenges for WSAN design. With emphasis on the reliability issue, this paper presents anapplication-level design methodology for WSANs in mobile control applications. Thesolution is generic in that it is independent of the underlying platforms, environment,control system models, and controller design. To capture the link quality characteristics interms of packet loss rate, experiments are conducted on a real WSAN system. From theexperimental observations, a simple yet efficient method is proposed to deal withunpredictable packet loss on actuator nodes. Trace-based simulations give promisingresults, which demonstrate the effectiveness of the proposed approach.

9.
Sensors (Basel) ; 7(12): 3179-3191, 2007 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-28903288

RESUMO

Wireless sensor/actuator networks (WSANs) are emerging rapidly as a newgeneration of sensor networks. Despite intensive research in wireless sensor networks(WSNs), limited work has been found in the open literature in the field of WSANs. Inparticular, quality-of-service (QoS) management in WSANs remains an important issue yetto be investigated. As an attempt in this direction, this paper develops a fuzzy logic controlbased QoS management (FLC-QM) scheme for WSANs with constrained resources and indynamic and unpredictable environments. Taking advantage of the feedback controltechnology, this scheme deals with the impact of unpredictable changes in traffic load on theQoS of WSANs. It utilizes a fuzzy logic controller inside each source sensor node to adaptsampling period to the deadline miss ratio associated with data transmission from the sensorto the actuator. The deadline miss ratio is maintained at a pre-determined desired level sothat the required QoS can be achieved. The FLC-QM has the advantages of generality,scalability, and simplicity. Simulation results show that the FLC-QM can provide WSANswith QoS support.

10.
PLoS One ; 8(2): e57225, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23460833

RESUMO

BACKGROUND: Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods. METHODOLOGY/PRINCIPAL FINDINGS: A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis. CONCLUSIONS: It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method. It is freely available at http://bioinformatics.awowshop.com/snlpred_page.php.


Assuntos
Núcleo Celular/metabolismo , Proteínas/química , Proteínas/metabolismo , Análise de Sequência de Proteína/métodos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Modelos Moleculares , Transporte Proteico , Curva ROC , Reprodutibilidade dos Testes , Frações Subcelulares/metabolismo , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA