Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Muscle Nerve ; 69(2): 134-147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38126120

RESUMO

After an amputation, advanced prosthetic limbs can be used to interface with the nervous system and restore motor function. Despite numerous breakthroughs in the field, many of the recent research advancements have not been widely integrated into clinical practice. This review highlights recent innovations in neuromuscular implants-specifically those that interface with skeletal muscle-which could improve the clinical translation of prosthetic technologies. Skeletal muscle provides a physiologic gateway to harness and amplify signals from the nervous system. Recent surgical advancements in muscle reinnervation surgeries leverage the "bio-amplification" capabilities of muscle, enabling more intuitive control over a greater number of degrees of freedom in prosthetic limbs than previously achieved. We anticipate that state-of-the-art implantable neuromuscular interfaces that integrate well with skeletal muscle and novel surgical interventions will provide a long-term solution for controlling advanced prostheses. Flexible electrodes are expected to play a crucial role in reducing foreign body responses and improving the longevity of the interface. Additionally, innovations in device miniaturization and ongoing exploration of shape memory polymers could simplify surgical procedures for implanting such interfaces. Once implanted, wireless strategies for powering and transferring data from the interface can eliminate bulky external wires, reduce infection risk, and enhance day-to-day usability. By outlining the current limitations of neuromuscular interfaces along with potential future directions, this review aims to guide continued research efforts and future collaborations between engineers and specialists in the field of neuromuscular and musculoskeletal medicine.


Assuntos
Membros Artificiais , Músculo Esquelético , Eletrodos
2.
Nano Lett ; 23(22): 10579-10586, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934045

RESUMO

Two-dimensional (2D) nanomaterials have been widely applied as building blocks of nanoporous materials for high-precision separations. However, most existing 2D nanomaterials suffer from poor continuity and a lack of interior linking, resulting in deteriorated performance when assembled into macroscopic bulk structures. Here, a unique superspreading-based phase inversion technique is proposed to directly construct 2D nanofibrous networks (NFNs) from a polymer solution. By tailoring capillary behavior, polymer solution droplets evolve into ultrathin liquid films through superspreading; manipulating phase instability, subsequently, enables the liquid film to phase invert into continuous nanostructured networks. The assembled single-layered NFNs possess integrated structural superiorities of 1D nanoscale fiber diameter (∼40 nm) and 2D lateral infinity, exhibiting a weblike nanoarchitecture with extremely small through-pores (∼100 nm). Our NFNs show remarkable performances in air filtration (PM0.3 removal) and water purification (microfiltration level). This creation of such attractive 2D fibrous nanomaterials can pave the way for versatile high-performance separation applications.

3.
Bioorg Chem ; 139: 106676, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37352720

RESUMO

Neuronal PAS domain protein 3 (NPAS3), a basic helix-loop-helix PER-ARNT-SIM (bHLH-PAS) family member, is a pivotal transcription factor in neuronal regeneration, development, and related diseases, regulating the expression of downstream genes. Despite several modulators of certain bHLH-PAS family proteins being identified, the NPAS3-targeted compound has yet to be reported. Herein, we discovered a hit compound BI-78D3 that directly blocks the NPAS3-ARNT heterodimer formation by covalently binding to the aryl hydrocarbon receptor nuclear translocator (ARNT) subunit. Further optimization based on the hit scaffold yielded a highly potent Compound 6 with a biochemical EC50 value of 282 ± 61 nM and uncovered the 5-nitrothiazole-2-sulfydryl as a cysteine-targeting covalent warhead. Compound 6 effectively down-regulated NPAS3's transcriptional function by disrupting the interface of NPAS3-ARNT complexes at cellular level. In conclusion, our study identifies the 5-nitrothiazole-2-sulfydryl as a cysteine-modified warhead and provides a strategy that blocks the NPAS3-ARNT heterodimerization by covalently conjugating ARNT Cys336 residue. Compound 6 may serve as a promising chemical probe for exploring NPAS3-related physiological functions.


Assuntos
Translocador Nuclear Receptor Aril Hidrocarboneto , Receptores de Hidrocarboneto Arílico , Translocador Nuclear Receptor Aril Hidrocarboneto/química , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Cisteína/metabolismo , Ligação Proteica , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo
4.
Environ Res ; 223: 115378, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36709875

RESUMO

Dibutyl phthalate (DBP) is a typical toxic and hazardous pollutant in pharmaceutical wastewater, affecting the metabolism of microbial flora, leading to decreased treatment efficiency, and deteriorated effluent quality in municipal wastewater treatment plants (WWTPs). This study conducted a long-term experiment with 6 operational stages in a pilot-scale A2O-MBR system, analyzing the effect of DBP on the bacterial community and their carbon and nitrogen metabolic pathways. 16S rRNA gene amplicon sequencing analysis and principal components analysis (PCA) showed that DBP at 8 mg/L significantly influenced the structure of bacterial community (P < 0.05), resulting in reduced bacterial community diversity. Metagenomic analysis was used to explore the embedded carbon and nitrogen metabolic pathways. At the presence of DBP, the metabolism of saccharides, lipids, and aromatic compounds were blocked owing to the vanishment of key enzyme (such as acetylaminohexosyltransferase (EC 2.4.1.92) and UDP-sugar pyro phosphorylase (EC 2.7.7.64)) encoding genes, resulting in weakened carbon metabolism, and thus reduced COD removal performance. The resultant deficiency of the genes such as those encoding hydroxyproline dehydrogenase (EC 1.5.5.3) gave rise to interrupted metabolic pathways of amino acid (arginine, proline, tyrosine, and tryptophan), resulting in declined function of nitrogen metabolism and thus reduced TN removal efficiency. The uncovery of the mechanisms by which DBP affects wastewater treatment system efficiency and microbial metabolism is of theoretical importance for the efficient operation of municipal and pharmaceutical wastewater treatment systems.


Assuntos
Dibutilftalato , Purificação da Água , Dibutilftalato/toxicidade , Eliminação de Resíduos Líquidos , Nitrogênio/metabolismo , Carbono , RNA Ribossômico 16S , Bactérias/genética , Bactérias/metabolismo , Redes e Vias Metabólicas , Preparações Farmacêuticas , Reatores Biológicos/microbiologia , Esgotos/microbiologia
5.
Bioorg Chem ; 101: 103962, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32480171

RESUMO

USP8, one member of deubiquitinating enzymes (DUBs) families, maintains the ubiquitination level of EGFR and regulates the downstream signaling pathways. The deregulation of USP8 has been implicated in many human diseases, especially in cancer. Therefore, USP8 has been identified as a promising target for drug design. Herein, via high throughput screening based on Ubiquitin-rhodamine-110 (Ubiquitin-Rho-110) fluorometric activity assay, we discovered a novel inhibitor DC-U43. By structure optimization, DC-U43-10 reached a half-maximal inhibitory concentration (IC50) value of 2.6 ± 1.1 µM and exhibited 10-fold selectivity against USP7. The binding between DC-U43-10 and USP8 was validated by surface plasmon resonance (SPR) assay with a KD value of 10.5 ± 3.7 µM. It also inhibited the colony formation of H1975 cells. Hence, DC-U43-10 represents a kind of USP8 inhibitors with novel scaffold and has broad prospects for being a probe for USP8-related academic and clinical research.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Ensaios de Triagem em Larga Escala/métodos , Ubiquitina Tiolesterase/antagonistas & inibidores , Endopeptidases , Humanos , Simulação de Acoplamento Molecular , Transdução de Sinais , Espectrometria de Fluorescência/métodos , Ressonância de Plasmônio de Superfície , Ubiquitinação
7.
Eur J Med Chem ; 270: 116333, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38569434

RESUMO

Cushing's syndrome (CS) is a complex disorder characterized by the excessive secretion of cortisol, with Cushing's disease (CD), particularly associated with pituitary tumors, exhibiting heightened morbidity and mortality. Although transsphenoidal pituitary surgery (TSS) stands as the primary treatment for CD, there is a crucial need to optimize patient prognosis. Current medical therapy serves as an adjunctive measure due to its unsatisfactory efficacy and unpredictable side effects. In this comprehensive review, we delve into recent advances in understanding the pathogenesis of CS and explore therapeutic options by conducting a critical analysis of potential drug targets and candidates. Additionally, we provide an overview of the design strategy employed in previously reported candidates, along with a summary of structure-activity relationship (SAR) analyses and their biological efficacy. This review aims to contribute valuable insights to the evolving landscape of CS research, shedding light on potential avenues for therapeutic development.


Assuntos
Síndrome de Cushing , Hipersecreção Hipofisária de ACTH , Humanos , Síndrome de Cushing/tratamento farmacológico , Síndrome de Cushing/etiologia , Hipersecreção Hipofisária de ACTH/complicações , Hipersecreção Hipofisária de ACTH/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Desenvolvimento de Medicamentos , Hidrocortisona/uso terapêutico
8.
Semin Plast Surg ; 38(1): 10-18, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38495064

RESUMO

Limb amputations can be devastating and significantly affect an individual's independence, leading to functional and psychosocial challenges in nearly 2 million people in the United States alone. Over the past decade, robotic devices driven by neural signals such as neuroprostheses have shown great potential to restore the lost function of limbs, allowing amputees to regain movement and sensation. However, current neuroprosthetic interfaces have challenges in both signal quality and long-term stability. To overcome these limitations and work toward creating bionic limbs, the Neuromuscular Laboratory at University of Michigan Plastic Surgery has developed the Regenerative Peripheral Nerve Interface (RPNI). This surgical construct embeds a transected peripheral nerve into a free muscle graft, effectively amplifying small peripheral nerve signals to provide enhanced control signals for a neuroprosthetic limb. Furthermore, the RPNI has the potential to provide sensory feedback to the user and facilitate neuroprosthesis embodiment. This review focuses on the animal studies and clinical trials of the RPNI to recapitulate the promising trajectory toward neurobionics where the boundary between an artificial device and the human body becomes indistinct. This paper also sheds light on the prospects of the improvement and dissemination of the RPNI technology.

9.
Eur J Med Chem ; 268: 116275, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38452725

RESUMO

USP2 and USP8 are crucial in the development and progression of breast cancer, primarily through the stabilization of protein substrates such as Her2 and ERα. The dual-target inhibitor ML364, targeting both USP2 and USP8, has garnered significant interest in recent research. In this study, we developed a series of ML364 derivatives using ligand-based drug design strategies. The standout compound, LLK203, demonstrated enhanced inhibitory activity, showing a 4-fold increase against USP2 and a 9-fold increase against USP8, compared to the parent molecule. In MCF-7 breast cancer cells, LLK203 effectively degraded key proteins involved in cancer progression and notably inhibited cell proliferation. Moreover, LLK203 exhibited potent in vivo efficacy in the 4T1 homograft model, while maintaining a low toxicity profile. These results underscore the potential of LLK203 as a promising dual-target inhibitor of USP2/USP8 for breast cancer treatment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Células MCF-7 , Proliferação de Células , Ubiquitina Tiolesterase , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte/farmacologia
10.
Adv Mater ; 36(13): e2313444, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38114068

RESUMO

Maintaining human body temperature is one of the basic needs for living, which requires high-performance thermal insulation materials to prevent heat exchange with external environment. However, the most widely used fibrous thermal insulation materials always suffer from the heavy weight, weak mechanical property, and moderate capacity to suppress heat transfer, resulting in limited personal cold and thermal protection performance. Here, an ultralight, mechanically robust, and thermally insulating polyimide (PI) aerogel is directly synthesized via constructing 3D interlocked curly nanofibrous networks during electrospinning. Controlling the solution/water molecule interaction enables the rapid phase inversion of charged jets, while the multiple jets are ejected by regulating charge density of the fluids, thus synergistically allowing numerous curly nanofibers to interlock and cross-link with each other to form porous aerogel structure. The resulted PI aerogel integrates the ultralight property with density of 2.4 mg cm-3, extreme temperature tolerance (mechanical robustness over -196 to 300 °C), and thermal insulation performance with ultralow thermal conductivity of 22.4 mW m-1 K-1, providing an ideal candidate to keep human thermal comfort under extreme temperature. This work can provide a source of inspiration for the design and development of nanofibrous aerogels for various applications.

11.
ACS Nano ; 17(24): 25439-25448, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38071622

RESUMO

A low temperature environment poses significant challenges to the global economy and public health. However, the existing cold-protective materials still struggle with the trade-off between thickness and thermal resistance, resulting in poor thermal-wet comfort and limited personal cold protection performance. Here, a scalable strategy, based on electrospinning and solution casting, is developed to create aerogel micro/nanofiber membranes with a hierarchical cellular architecture by manipulating the phase separation of the charged jets and of the spreading casting solution. The integration of interconnected nanopores (30-60 nm), ultrafine fiber diameter, and high porosity, enables the aerogel micro/nanofiber membranes with lightweight, ultrathin thickness (∼0.5 mm), and superior warmth retention performance with ultralow thermal conductivity of 14.01 mW m-1 K-1. And the resultant membrane with customized semiclosed walls exhibits both striking wind resistance and satisfactory thermal-wet comfort (3.4 °C warmer than the cutting-edge thermal underwear). This work will inspire the design and development of high-performance fibrous materials for thermal management applications.

12.
Eur J Med Chem ; 259: 115711, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572539

RESUMO

Acute myeloid leukemia (AML) is a prevalent hematological tumor associated with a high morbidity and mortality rate. CDK9, functioning as a pivotal transcriptional regulator, facilitates transcriptional elongation through phosphorylation of RNA polymerase II, which further governs the protein levels of Mcl-1 and c-Myc. Therefore, CDK9 has been considered as a promising therapeutic target for AML treatment. Here, we present the design, synthesis, and evaluation of CDK9 inhibitors bearing a flavonoid scaffold. Among them, compound 21a emerged as a highly selective CDK9 inhibitor (IC50 = 6.7 nM), exhibiting over 80-fold selectivity towards most other CDK family members and high kinase selectivity. In Mv4-11 cells, 21a effectively hindered cell proliferation (IC50 = 60 nM) and induced apoptosis by down-regulating Mcl-1 and c-Myc. Notably, 21a demonstrated significant inhibition of tumor growth in the Mv4-11 xenograft tumor model. These findings indicate that compound 21a holds promise as a potential candidate for treating AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/patologia , Apoptose , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Linhagem Celular Tumoral , Quinase 9 Dependente de Ciclina/metabolismo
13.
Chemosphere ; 308(Pt 3): 136559, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36207797

RESUMO

Dibutyl phthalate (DBP) is a typical contaminant in pharmaceutical wastewater with strong bio-depressive properties which potentially affects the operation of municipal wastewater treatment systems. Based on a year-round monitoring of the quality of influent and effluent of a full-scale pharmaceutical wastewater treatment plant in Northeast China, the DBP was found to be the representative pollutant and its concentration in the effluent ranged 4.28 ± 0.93 mg/L. In this study, the negative effects of DBP on a pilot-scale A2/O-MBR system was investigated. When the influent DBP concentration reached 8.0 mg/L, the removals of chemical oxygen demand (COD) and total nitrogen (TN) were significantly inhabited (P < 0.01), with the effluent concentration of 54.7 ± 2.6 mg/L and 22.8 ± 3.7 mg/L, respectively. The analysis of pollutant removal characteristics of each process unit showed that DBP had the most significant effects on the removals of COD and TN in the anoxic tank. The α- and ß-diversity in the system decreased significantly when the influent DBP concentration reached 8.0 mg/L. The impacts of DBP on known nitrifying bacteria, such as Nitrospira, and phosphorus accumulating organisms (PAOs), such as Cadidatus Accumulibacter, were not remarkable. Whereas, DBP negatively affected the proliferation of key denitrifying bacteria, represented by Simplicispira, Dechloromonas and Acinetobacter. This study systematically revealed the impacts of DBP on the pollutants removal performance and the bacterial community structure of the biological municipal wastewater treatment process, which would provide insights for understanding the potential impacts of residues in treated pharmaceutical wastewater on biological municipal wastewater treatment.


Assuntos
Poluentes Ambientais , Purificação da Água , Bactérias , Reatores Biológicos/microbiologia , Desnitrificação , Dibutilftalato , Nitrogênio , Preparações Farmacêuticas , Fósforo , Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Águas Residuárias/química
14.
J Med Chem ; 65(13): 8914-8932, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35786929

RESUMO

Ubiquitin-specific protease 8 (USP8), belonging to the deubiquitinase family, has been implicated to be closely related to the occurrence of many malignant tumors, but only a few USP8-targeting inhibitors have been reported to date. In this study, we present virtual screening to discover novel hit candidates that inhibit the catalytic activity of USP8. Exploration of the structure-activity relationship led to the identification of compound DC-U4106, which binds to USP8 with a KD value of 4.7 µM and is selective over USP2 and USP7. Western blotting and immunoprecipitation showed that DC-U4106 could target the ubiquitin pathway and facilitate the degradation of ERα. In a xenograft tumor model, DC-U4106 also significantly inhibited tumor growth with minimal toxicity. Overall, our findings suggest that DC-U4106 is a promising drug candidate and targeting the USP8-ERα complex could be a new approach to treat ER-positive or drug-resistant breast cancer.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Endopeptidases/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Feminino , Humanos , Ubiquitina/metabolismo , Ubiquitina Tiolesterase , Peptidase 7 Específica de Ubiquitina/metabolismo
15.
Eur J Med Chem ; 230: 114119, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35063736

RESUMO

Osteoporosis is a common disease in which the risk of fracture increases due to decreased bone mass and qualitative skeletal changes. Selective androgen receptor modulators (SARMs) are agonists with tissue selectivity, which act as partial or weak androgen receptor (AR) agonists in androgenic tissues, but mainly as complete AR agonists in synthetic metabolic tissues. In the recent 20 years, many scaffolds of SARMs have been reported, among which several molecules are promising and are undergoing clinical trial evaluation. However, it is still a challenge to discover SARMs with high activity and reduced side effects. In this review, not only are structure of SARMs reported in the literatures systematically collected and classified but also the structure-activity relationships (SAR) are systematically summarized. Furthermore, the advances in SARMs as potential treatment for osteoporosis are also updated.


Assuntos
Osteoporose , Receptores Androgênicos , Antagonistas de Androgênios/farmacologia , Androgênios , Humanos , Osteoporose/tratamento farmacológico , Relação Estrutura-Atividade
16.
Water Res ; 216: 118258, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35320769

RESUMO

This work analyzed, for the first time, the bioenergetics of PAOs and GAOs in full-scale wastewater treatment plants (WWTPs) for the uptake of different carbon sources. Fifteen samples were collected from five full-scale WWTPs. Predominance of different PAOs, i.e., Ca. Accumulibacter (0.00-0.49%), Tetrasphaera (0.37-3.94%), Microlunatus phosphovorus (0.01-0.18%), etc., and GAOs, i.e., Ca. Competibacter (0.08-5.39%), Defluviicoccus (0.05-5.34%), Micropruina (0.17-1.87%), etc., were shown by 16S rRNA gene amplicon sequencing. Despite the distinct PAO/GAO community compositions in different samples, proton motive force (PMF) was found as the key driving force (up to 90.1%) for the uptake of volatile fatty acids (VFAs, acetate and propionate) and amino acids (glutamate and aspartate) by both GAOs and PAOs at the community level, contrasting the previous understanding that Defluviicoccus have a low demand of PMF for acetate uptake. For the uptake of acetate or propionate, PAOs rarely activated F1, F0- ATPase (< 11.7%) or fumarate reductase (< 5.3%) for PMF generation; whereas, intensive involvements of these two pathways (up to 49.2% and 61.0%, respectively) were observed for GAOs, highlighting a major and community-level difference in their VFA uptake biogenetics in full-scale systems. However, different from VFAs, the uptake of glutamate and aspartate by both PAOs and GAOs commonly involved fumarate reductase and F1, F0-ATPase activities. Apart from these major and community-level differences, high level fine-scale micro-diversity in carbon uptake bioenergetics was observed within PAO and GAO lineages, probably resulting from their versatilities in employing different pathways for reducing power generation. Ca. Accumulibacter and Halomonas seemed to show higher dependency on the reverse operation of F1, F0-ATPase than other PAOs, likely due to the low involvement of glyoxylate shunt pathway. Unlike Tetrasphaera, but similar to Ca. Accumulibacter, Microlunatus phosphovorus took up glutamate and aspartate via the proton/glutamate-aspartate symporter driven by PMF. This feature was testified using a pure culture of Microlunatus phosphovorus stain NM-1. The major difference between PAOs and GAOs highlights the potential to selectively suppress GAOs for community regulation in EBPR systems. The finer-scale carbon uptake bioenergetics of PAOs or GAOs from different lineages benefits in understanding their interactions in community assembly in complex environment.


Assuntos
Actinomycetales , Betaproteobacteria , Acetatos , Actinomycetales/metabolismo , Adenosina Trifosfatases/metabolismo , Ácido Aspártico , Betaproteobacteria/metabolismo , Reatores Biológicos , Carbono/metabolismo , Metabolismo Energético , Ácido Glutâmico/metabolismo , Glicogênio/metabolismo , Fósforo/metabolismo , Polifosfatos/metabolismo , Propionatos , Propionibacteriaceae , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Succinato Desidrogenase/metabolismo
17.
Sci Adv ; 8(39): eabn7430, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36179024

RESUMO

Our inability to derive the neuronal diversity that comprises the posterior central nervous system (pCNS) using human pluripotent stem cells (hPSCs) poses an impediment to understanding human neurodevelopment and disease in the hindbrain and spinal cord. Here, we establish a modular, monolayer differentiation paradigm that recapitulates both rostrocaudal (R/C) and dorsoventral (D/V) patterning, enabling derivation of diverse pCNS neurons with discrete regional specificity. First, neuromesodermal progenitors (NMPs) with discrete HOX profiles are converted to pCNS progenitors (pCNSPs). Then, by tuning D/V signaling, pCNSPs are directed to locomotor or somatosensory neurons. Expansive single-cell RNA-sequencing (scRNA-seq) analysis coupled with a novel computational pipeline allowed us to detect hundreds of transcriptional markers within region-specific phenotypes, enabling discovery of gene expression patterns across R/C and D/V developmental axes. These findings highlight the potential of these resources to advance a mechanistic understanding of pCNS development, enhance in vitro models, and inform therapeutic strategies.


Assuntos
Neurônios , Transcriptoma , Diferenciação Celular/genética , Sistema Nervoso Central , Humanos , Neurônios/fisiologia , RNA
18.
Water Res ; 209: 117894, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34890912

RESUMO

Enhanced biological phosphorus removal (EBPR) is used extensively in full-scale wastewater treatment plants for the removal of phosphorus. Despite previous evidence showing that glycine is a carbon source for a certain lineage of polyphosphate accumulating organisms (PAOs) such as Tetrasphaera, it is still unknown whether glycine can support EBPR. We observed an overall adverse effect of glycine on EBPR using activated sludge from both full-scale wastewater treatment plants and lab-scale reactors harboring distant and diverse PAOs and glycogen accumulating organisms (GAOs), including Candidatus Accumulibacter, Thiothrix, Tetrasphaera, Dechloromonas, Ca. Competibacter, and Defluviicoccus, among others. Glycine induced phosphorus (P) release under anaerobic conditions without being effectively taken up by cells. The induced P release rate correlated with glycine concentration in the range of 10 to 50 mg C/L. PAOs continued to release P in the presence of glycine under aerobic conditions without any evident P uptake. Under mixed carbon conditions, the occurrence of glycine did not seem to affect acetate uptake; however, it significantly reduced the rate of P uptake in the aerobic phase. Overall, glycine did not appear to be an effective carbon source for a majority of PAOs and GAOs in full-scale and lab-scale systems, and neither did other community members utilize glycine under anaerobic or aerobic conditions. Metatranscriptomic analysis showed the transcription of glycine cleavage T, P and H protein genes, but not of the L protein or the downstream genes in the glycine cleavage pathway, suggesting barriers to metabolizing glycine. The high transcription of a gene encoding a drug/metabolite transporter suggests a potential efflux mechanism, where glycine transported into the cells is in turn exported at the expense of ATP, resulting in P release without affecting the glycine concentration in solution. The ability of glycine to induce P release without cellular uptake suggests a way to effectively recover P from P-enriched waste sludge.

19.
ACS Appl Mater Interfaces ; 13(48): 58027-58035, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34821147

RESUMO

Warmth retention equipment for personal cold protection is highly demanded in freezing weather; however, most present warmth retention materials suffer from high thermal conductivity, weak mechanical properties, and strong flammability, resulting in serious security risks. Herein, we report a facile strategy to fabricate nano-/microfibrous sponges with superelasticity, robust flame retardation, and effective warmth retention performance via direct electrospinning. The three-dimensional fluffy sponges with low volume density and high porosity are constructed by accurately regulating the relative humidity; meanwhile, the mechanically robust polyamide-imide nanofibers with high limit oxygen index (LOI) are innovatively introduced to improve the structural stability and flammability of the nano-/microfibrous sponges. Strikingly, the developed nano-/microfibrous sponges exhibit ultralight characteristics (6.9 mg cm-3), superelasticity (∼0% plastic deformation after 100 compression tests), effective flame retardant with LOI of 26.2%, and good heat preservation ability (thermal conductivity of 24.6 mW m-1 K-1). This work may shed light on designing superelastic and flame-retardant warmth retention materials for various applications.

20.
J Med Chem ; 63(22): 13228-13257, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-32866383

RESUMO

Cyclin-dependent kinase 9 (CDK9), which regulates transcriptional elongation, is an attractive therapeutic target for many cancers, especially for cancers driven by transcriptional dysregulation. In particular, CDK9 promotes RNA polymerase II pause/release, a rate-limiting step in normal transcriptional regulation that is frequently dysregulated in cancers. Emerging evidence indicates that selective CDK9 inhibition or degradation may provide a therapeutic benefit against certain cancers. Indeed, the development of CDK9 modulators (inhibitors and degraders) has attracted great attention, with several molecules currently under clinical development. This review provides an overview of recent advances in CDK9 modulators in general, with special emphasis on compounds under clinical evaluation and new emerging strategies, such as proteolysis targeting chimeras (PROTACs).


Assuntos
Química Farmacêutica/tendências , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Desenvolvimento de Medicamentos/tendências , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Química Farmacêutica/métodos , Quinase 9 Dependente de Ciclina/química , Desenvolvimento de Medicamentos/métodos , Humanos , Simulação de Acoplamento Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA