Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(13): 9685, 2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-36919711

RESUMO

Correction for 'Noncovalent wedging effect catalyzed the cis to syn transformation of a surface-adsorbed polymer backbone toward an unusual thermodynamically stable supramolecular product' by Zhi-Xuan Liu et al., Phys. Chem. Chem. Phys., 2022, 24, 30010-30016, https://doi.org/10.1039/D2CP04184G.

2.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446716

RESUMO

Sensitive detection of nitrogen dioxide (NO2) is of significance in many areas for health and environmental protections. In this work, we developed an efficient NO2 sensor that can respond within seconds at room temperature, and the limit of detection (LOD) is as low as 100 ppb. Coating cyano-substituted poly(p-phenylene vinylene) (CN-PPV) films on graphene (G) layers can dope G sheets effectively to a heavy n state. The influences of solution concentrations and annealing temperatures on the n-doping effect were investigated in detail. The CN-PPV-G transistors fabricated with the optimized parameters demonstrate active sensing abilities toward NO2. The n-doping state of CN-PPV-G is reduced dramatically by NO2, which is a strong p-doping compound. Upon exposure to 25 ppm of NO2, our CN-PPV-G sensors react in 10 s, indicating it is almost an immediate response. LOD is determined as low as 100 ppb. The ultrahigh responding speed and low LOD are not affected in dry air. Furthermore, cycling use of our sensors can be realized through simple annealing. The superior features shown by our CN-PPV-G sensors are highly desired in the applications of monitoring the level of NO2 in situ and setting immediate alarms. Our results also suggest that transfer curves of transistors can react very promptly to the stimulus of target gas and, thus, are very promising in the development of fast-response sensing devices although the response values may not reach maximum as a tradeoff.


Assuntos
Grafite , Dióxido de Nitrogênio , Limite de Detecção , Temperatura
3.
Inorg Chem ; 61(33): 13058-13066, 2022 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-35838661

RESUMO

It is a great challenging task for selectivity control of both CO2 photoreduction and water splitting to produce syngas via precise microenvironment regulation. Herein, a series of UiO-type Eu-MOFs (Eu-bpdc, Eu-bpydc, Rux-Eu-bpdc, and Rux-Eu-bpydc) with different surrounding confined spaces were designed and synthesized. These photosensitizing Rux-Eu-MOFs were used as the molecular platform to encapsulate the [CoII4(dpy{OH}O)4(OAc)2(H2O)2]2+ (Co4) cubane cluster for constructing Co4@Rux-Eu-MOF (x = 0.1, 0.2, and 0.4) heterogeneous photocatalysts for efficient CO2 photoreduction and water splitting. The H2 and CO yields can reach 446.6 and 459.8 µmol·g-1, respectively, in 10 h with Co4@Ru0.1-Eu-bpdc as the catalyst, and their total yield can be dramatically improved to 2500 µmol·g-1 with the ratio of CO/H2 ranging from 1:1 to 1:2 via changing the photosensitizer content in the confined space. By increasing the N content around the cubane, the photocatalytic performance drops sharply in Co4@Ru0.1-Eu-bpydc, but with an enhanced proportion of CO in the final products. In the homogeneous system, the Co4 cubane was surrounding with Ru photosensitizers via week interactions, which can drive water splitting into H2 with >99% selectivity. Comprehensive structure-function analysis highlights the important role of microenvironment regulation in the selectivity control via constructing homogeneous and heterogeneous photocatalytic systems. This work provides a new insight for engineering a catalytic microenvironment of the cubane cluster for selectivity control of CO2 photoreduction and water splitting.


Assuntos
Dióxido de Carbono , Fotossíntese , Catálise , Fármacos Fotossensibilizantes , Água
4.
Phys Chem Chem Phys ; 24(48): 30010-30016, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36472299

RESUMO

The significant influence of noncovalent interactions on catalytic processes has been recently appreciated but is still in its infancy. In this report, it is found that wedging Me-PTCDI (small-molecule) between the alkyl chains of PffBT4T-2OD (polymer) and a graphite substrate can reduce the energy barrier of flipping over the surface-adsorbed alkylthiophene group from the cis to syn conformation, revealing the catalytic role of Me-PTCDI via a noncovalent wedging effect. The wedging of Me-PTCDI brings the interactions between the alkyl chains and substrate to a very weak level by lifting up the alkyl chains, which eliminates the major hindrance of the flipping process to one main factor: the torsion of the dihedral angles of the thiophene group. The Me-PTCDI/syn PffBT4T-2OD arrangement shows unusual stability compared to the cis one because the syn conformation allows the alkyl chains to construct dense lamella and facilitates interactions between Me-PTCDI and the syn PffBT4T-2OD backbones. The results are helpful for boosting the development of noncovalent catalysis and bottom-up fabrications toward devices functionalized at a molecular level.

5.
Small ; 17(44): e2103558, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34605183

RESUMO

Solar-driven CO2 reaction with water oxidation into alcohols represents a promising approach to achieve real artificial photosynthesis. However, rapid recombination of photogenerated carriers seriously restricts the development of artificial photosynthesis. Herein, a facile method is explored to construct low-cost Z-Scheme heterostructure Cu2 O/polymeric carbon nitride (PCN) by in situ growth of Cu2 O hollow nanocrystal on PCN. The protective PCN layer and Z-schematic charge flow can make robust Cu2 O/PCN photocatalysts, and the spatial separation of electrons and holes with high redox potentials of ECB (-1.15 eV) and EVB (1.65 eV) versus NHE can efficiently drive CO2 photoreduction to methanol in pure water, which is further confirmed by DFT calculation. The Z-scheme heterostructure Cu2 O/PCN exhibits a high methanol yield of 276 µmol g-1 in 8 h with ca. 100% selectivity, much superior to that of isolated Cu2 O and PCN, and all the reported Cu2 O-based heterostructures. This work provides a unique strategy to efficiently and selectively promote the conversion of CO2 and H2 O into high-value chemicals by constructing a low-cost Z-scheme heterostructure.

6.
J Adv Res ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38036217

RESUMO

INTRODUCTION: Neurological dysfunction induced by fluoride contamination is still one of major concern worldwide. Recently, neuroprotective roles of silent information regulator 1 (SIRT1) focusing on mitochondrial function have been highlighted. However, what roles SIRT1 exerts and the underlying regulative mechanisms, remain largely uncharacterized in such neurotoxic process of fluoride. OBJECTIVES: We aimed at evaluating the regulatory roles of SIRT1 in human neuroblastoma SH-SY5Y cells and Sprague-Dawley rats with fluoride treatment, and to further identify potential miRNA directly targeting SIRT1. METHODS: Pharmacological suppression of SIRT1 by nicotinamide (NIC) and promotion of SIRT1 by adenovirus (Ad-SIRT1) or resveratrol (RSV) were employed to assess the effects of SIRT1 in mitochondrial dysfunction induced by fluoride. Also, miRNAs profiling and bioinformatic prediction were used to screen the miRNAs which can regulate SIRT1 directly. Further, chemical mimic or inhibitor of chosen miRNA was applied to validate the modulation of chosen miRNA. RESULTS: NIC exacerbated defects in mitochondrial network dynamics and cytochrome c (Cyto C) release-driven apoptosis, contributing to fluoride-induced neuronal death. In contrast, the ameliorative effects were observed when overexpressing SIRT1 by Ad-SIRT1 in vitro or RSV in vivo. More importantly, miR-708-3p targeting SIRT1 directly was identified. And interestingly, moreover, treatment with chemically modified miR-708-3p mimic aggravated, while miR-708-3p inhibitor suppressed fluoride-caused neuronal death. Further confirmedly, overexpressing SIRT1 effectively neutralized miR-708-3p mimic-worsened fluoride neuronal death via correcting mitochondrial network dynamics. On contrary, inhibiting SIRT1 counteracted the promotive effects of miR-708-3p inhibitor against neurotoxic response by fluoride through aggravating abnormal mitochondrial network dynamics. CONCLUSION: These data underscore the functional importance of SIRT1 to mitochondrial network dynamics in neurotoxic process of fluoride and further screen a novel unreported neuronal function of miR-708-3p as an upstream regulator of targeting SIRT1, which has important theoretical implications for a potential therapeutic and preventative target for treatment of neurotoxic progression by fluoride.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA