Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Glob Chang Biol ; 22(10): 3474-86, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27090595

RESUMO

Quantitative reconstructions of terrestrial climate are highly sought after but rare, particularly in Australia. Carbon isotope discrimination in plant leaves (Δleaf ) is an established indicator of past hydroclimate because the fractionation of carbon isotopes during photosynthesis is strongly influenced by water stress. Leaves of the evergreen tree Melaleuca quinquenervia have been recovered from the sediments of some perched lakes on North Stradbroke and Fraser Islands, south-east Queensland, eastern Australia. Here, we examine the potential for using M. quinquenervia ∆leaf as a tracer of past rainfall by analysing carbon isotope ratios (δ(13) C) of modern leaves. We firstly assess Δleaf variation at the leaf and stand scale and find no systematic pattern within leaves or between leaves due to their position on the tree. We then examine the relationships between climate and Δleaf for a 11-year time series of leaves collected in a litter tray. M. quinquenervia retains its leaves for 1-4 years; thus, cumulative average climate data are used. There is a significant relationship between annual mean ∆leaf and mean annual rainfall of the hydrological year for 1-4 years (i.e. 365-1460 days) prior to leaf fall (r(2)  = 0.64, P = 0.003, n = 11). This relationship is marginally improved by accounting for the effect of pCO2 on discrimination (r(2)  = 0.67, P = 0.002, n = 11). The correlation between rainfall and Δleaf , and the natural distribution of Melaleuca quinquenervia around wetlands of eastern Australia, Papua New Guinea and New Caledonia offers significant potential to infer past rainfall on a wide range of spatial and temporal scales.


Assuntos
Isótopos de Carbono , Melaleuca , Austrália , Carbono , Papua Nova Guiné , Folhas de Planta , Chuva
2.
Sci Total Environ ; 812: 152385, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34942258

RESUMO

Lakes and their catchments have been subjected to centuries to millennia of exploitation by humans. Efficient monitoring methods are required to promote proactive protection and management. Traditional monitoring is time consuming and expensive, which limits the number of lakes monitored. Lake surface sediments provide a temporally integrated representation of environmental conditions and contain high microbial biomass. Based on these attributes, we hypothesized that bacteria associated with lake trophic states could be identified and used to develop an index that would not be confounded by non-nutrient stressor gradients. Metabarcoding (16S rRNA gene) was used to assess bacterial communities present in surface sediments from 259 non-saline lakes in New Zealand encompassing a range of trophic states from alpine microtrophic lakes to lowland hypertrophic lakes. A subset of lakes (n = 96) with monitoring data was used to identify indicator amplicon sequence variants (ASVs) associated with different trophic states. A total of 10,888 indicator taxa were identified and used to develop a Sediment Bacterial Trophic Index (SBTI), which signficantly correlated (r2 = 0.842, P < 0.001) with the Trophic Lake Index. The SBTI was then derived for the remaining 163 lakes, providing new knowledge of the trophic state of these unmonitored lakes. This new, robust DNA-based tool provides a rapid and cost-effective method that will allow a greater number of lakes to be monitored and more effectively managed in New Zealand and globally. The SBTI could also be applied in a paleolimnological context to investigate changes in trophic status over centuries to millennia.


Assuntos
Bactérias , Lagos , Bactérias/genética , Sedimentos Geológicos , Humanos , Nova Zelândia , RNA Ribossômico 16S
3.
Sci Total Environ ; 724: 137999, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32408424

RESUMO

Defining ecological thresholds has become increasingly relevant for water resource management. Despite the fact that there has been a rapid expansion in methods to evaluate ecological threshold responses to environmental stressors, evaluation of the relative benefits of various methods has received less attention. This study compares the performance of Gradient Forest (GF) and Threshold Indicator Taxa Analysis (TITAN) for identifying water quality thresholds in both field and synthetic data. Analysis of 14 years of macroinvertebrates data from the Mediterranean catchments of the Torrens and Onkaparinga Rivers, South-Australia, identified electrical conductivity (EC) and total phosphorus (TP) as the most important water quality variables affecting macroinvertebrates. Water quality thresholds for macroinvertebrates identified by both methods largely corresponded at low EC (GF: 400-900 µS cm-1 vs. TITAN: 407-951 µScm-1), total phosphorus (TP) (GF: 0.02-0.18 mg L-1 vs. TITAN: 0.02-0.04 mg L-1) and total nitrogen (TN) (GF: 0.2 mg L-1 vs. TITAN: 0.28-0.67 mg L-1) concentrations. However, multiple GF-derived thresholds, particularly at high stressor concentrations, were representative of low data distribution, and thus need to be considered with caution. In another case study of South Australian diatom data, there were marked differences in GF and TITAN identified thresholds for EC (GF: 5000 µScm-1 vs. TITAN 1004-2440 µS cm-1) and TP (GF: 250-500 µg L-1 vs. TITAN: 11-329 µg L-1). These differences were due to the fact that while TITAN parsed species responses into negative and positive taxa, GF overestimated thresholds by aggregating the response of taxa that increase and decrease along environmental gradients. Given these findings, we also evaluated the methods' performance using different distributions of synthetic data i.e. with both skewed and uniform distribution of samples and species responses. Both methods identified similar change-points in the case of a uniform environmental gradient, except when species optima were simulated at centre of the gradient. Here GF detected the change-points but TITAN failed to do so. GF also outperformed TITAN when four simulated species change-points were present. Thus, the distribution of species responses and optima and the evenness of the environment gradient can affect the models' performance. This study has shown that both methods are robust in identifying change in species response but threshold identification differs depending both on the analysis used and the nature of ecological data. We recommend the careful application of GF and TITAN, noting these differences in performance, will improve their application for water resource management.

4.
Sci Total Environ ; 310(1-3): 61-71, 2003 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-12812731

RESUMO

Palaeolimnological records can be powerfully combined with documentary data to explain the impact of modern industry and agriculture on lake systems and their catchments. Such an approach is highly appropriate in Australia since modern society was imposed on a continent until recently populated solely by hunter-gatherers and because there is a wealth of historical data to draw upon. Confounding factors such as the influence of climate change, depopulation of the indigenous community and non-linear responses to human impact must be considered in analysis of the relative importance of various land use changes upon lake pollution.


Assuntos
Clima , Dinâmica Populacional , Abastecimento de Água/história , Agricultura/história , Austrália , Meio Ambiente , História Antiga , Humanos , Indústrias/história , Paleontologia , Água/química
5.
Environ Sci Technol ; 37(15): 3250-5, 2003 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12966966

RESUMO

Reviews of stream monitoring data suggest that there has been significant acidification (>1.0 pH unit at some sites) of Victorian streamwaters over the past 3 decades. To assess whether these declines are within the range of natural variability, we developed a diatom model for inferring past pH and applied it to a ca. 3500-yr diatom record from a flood plain lake, Callemondah 1 Billabong, on the Goulburn River, which has among the most substantial observed pH declines. The model has a jackkniffed r2 between diatom inferred and measured pH of 0.77 and a root mean square error of prediction of 0.35 pH units. In the pre-European period, pH was stable (range 6.5-6.7) for approximately 3000 yr. Since European settlement around 160 yr ago, diatom-inferred billabong pH has increased significantly by >0.5 units. We hypothesize that this increase in pH is related to processes associated with land clearance (e.g., increased base cation load and decreased organic acid load). There is no evidence of the recent monitored declines in the Callemondah record, which may indicate that that flood plain lakes and the main stream are experiencing divergent pH trends or that the temporal resolution in the billabong sediment record is insufficient to register recent declines.


Assuntos
Chuva Ácida , Monitoramento Ambiental/métodos , Modelos Teóricos , Rios , Agricultura , Diatomáceas , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Dinâmica Populacional , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA