Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chem Biodivers ; 20(5): e202201030, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37017259

RESUMO

Herein, we report the design, synthesis and evaluation of novel (E)-3-(3-oxo-4-substituted-3,4-dihydro-2H-benzo[b][1,4]oxazin-6-yl)-N-hydroxypropenamides (4 a-i, 7 a-g) targeting histone deacetylases. Three human cancer cell lines were used to test the cytotoxicity of the synthesized compounds (SW620, colon; PC-3, prostate; NCI-H23, lung cancer); inhibitory activity towards HDAC; anticancer activity; as well as their impact on the cell cycle and apoptosis. As a result, compounds 4 a-i bearing the alkyl substituents seemed to be less potent than the benzyl-containing compounds 7 a-g in all biological assays. Compounds 7 e-f were found to be the most active HDAC inhibitors with IC50 of 1.498±0.020 µM and 1.794±0.159 µM, respectively. In terms of cytotoxicity and anticancer assay, 7 e and 7 f also showed good activity with IC50 values in the micromolar range. In addition, the cell cycle and apoptosis of SW620 were affected by compound 7 f in almost a similar manner to that of reference compound SAHA. Docking assays were carried out for analysis the binding mode and selectivity of this compound toward 8 HDAC isoforms. Overall, our data confirmed that the inhibition of HDAC plays a pivotal role in their anticancer activity.


Assuntos
Antineoplásicos , Inibidores de Histona Desacetilases , Humanos , Inibidores de Histona Desacetilases/química , Relação Estrutura-Atividade , Antineoplásicos/química , Linhagem Celular Tumoral , Ácidos Hidroxâmicos , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Desenho de Fármacos , Simulação de Acoplamento Molecular
2.
Molecules ; 28(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36838960

RESUMO

In recent years, histone deacetylases (HDACs) have emerged as promising targets in the treatment of cancer. The approach is to inhibit HDACs with drugs known as HDAC inhibitors (HDACis). Such HDACis are broadly classified according to their chemical structure, e.g., hydroxamic acids, benzamides, thiols, short-chain fatty acids, and cyclic peptides. Fluorination plays an important role in the medicinal-chemical design of new active representatives. As a result of the introduction of fluorine into the chemical structure, parameters such as potency or selectivity towards isoforms of HDACs can be increased. However, the impact of fluorination cannot always be clearly deduced. Nevertheless, a change in lipophilicity and, hence, solubility, as well as permeability, can influence the potency. The selectivity towards certain HDACs isoforms can be explained by special interactions of fluorinated compounds with the structure of the slightly different enzymes. Another aspect is that for a more detailed investigation of newly synthesized fluorine-containing active compounds, fluorination is often used for the purpose of labeling. Aside from the isotope 19F, which can be detected by nuclear magnetic resonance spectroscopy, the positron emission tomography of 18F plays a major role. However, to our best knowledge, a survey of the general effects of fluorination on HDACis development is lacking in the literature to date. Therefore, the aim of this review is to highlight the introduction of fluorine in the course of chemical synthesis and the impact on biological activity, using selected examples of recently developed fluorinated HDACis.


Assuntos
Flúor , Inibidores de Histona Desacetilases , Inibidores de Histona Desacetilases/farmacologia , Halogenação , Histona Desacetilases/metabolismo , Ácidos Hidroxâmicos/química , Isoformas de Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA