Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Ecol Evol ; 11(13): 8528-8541, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34257914

RESUMO

AIM: Connectivity conservation is ideally based on empirical information on how landscape heterogeneity influences species-specific movement and gene flow. Here, we present the first large-scale evaluation of landscape impacts on genetic connectivity in the European wildcat (Felis silvestris), a flagship and umbrella species for connectivity conservation across Europe. LOCATION: The study was carried out in the core area of the distributional range of wildcats in Germany, covering about 186,000 km2 of a densely populated and highly fragmented landscape. METHODS: We used data of 975 wildcats genotyped at 14 microsatellites and an individual-based landscape genetic framework to assess the importance of twelve landscape variables for explaining observed genetic connectivity. For this, we optimized landscape resistance surfaces for all variables and compared their relative impacts using multiple regression on distance matrices and commonality analysis. RESULTS: Genetic connectivity was best explained by a synergistic combination of six landscape variables and isolation by distance. Of these variables, road density had by far the strongest individual impact followed by synergistic effects of agricultural lands and settlements. Subsequent analyses involving different road types revealed that the strong effect of road density was largely due to state roads, while highways and federal roads had a much smaller, and county roads only a negligible impact. MAIN CONCLUSIONS: Our results highlight that landscape-wide genetic connectivity in wildcats across Germany is strongly shaped by the density of roads and in particular state roads, with higher densities providing larger resistance to successful dispersal. These findings have important implications for conservation planning, as measures to mitigate fragmentation effects of roads (e.g., over- or underpasses) often focus on large, federally managed transportation infrastructures. While these major roads exert local barrier effects, other road types can be more influential on overall connectivity, as they are more abundant and more widespread across the landscape.

2.
Mol Ecol Resour ; 20(3)2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31925943

RESUMO

The genomic era has led to an unprecedented increase in the availability of genome-wide data for a broad range of taxa. Wildlife management strives to make use of these vast resources to enable refined genetic assessments that enhance biodiversity conservation. However, as new genomic platforms emerge, problems remain in adapting the usually complex approaches for genotyping of noninvasively collected wildlife samples. Here, we provide practical guidelines for the standardized development of reduced single nucleotide polymorphism (SNP) panels applicable for microfluidic genotyping of degraded DNA samples, such as faeces or hairs. We demonstrate how microfluidic SNP panels can be optimized to efficiently monitor European wildcat (Felis silvestris S.) populations. We show how panels can be set up in a modular fashion to accommodate informative markers for relevant population genetics questions, such as individual identification, hybridization assessment and the detection of population structure. We discuss various aspects regarding the implementation of reduced SNP panels and provide a framework that will allow both molecular ecologists and practitioners to help bridge the gap between genomics and applied wildlife conservation.


Assuntos
Animais Selvagens/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Biodiversidade , Biomarcadores/metabolismo , Gatos , Genética Populacional/métodos , Genômica/métodos , Genótipo , Técnicas de Genotipagem/métodos , Hibridização Genética/genética
3.
Ecol Evol ; 8(4): 2290-2304, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29468044

RESUMO

Hybridization between wild species and their domestic congeners is considered a major threat for wildlife conservation. Genetic integrity of the European wildcat, for instance, is a concern as they are outnumbered by domestic cats by several orders of magnitude throughout its range. We genotyped 1,071 individual wildcat samples obtained from hair traps and roadkills collected across the highly fragmented forests of western Central Europe, in Germany and Luxembourg, to assess domestic cat introgression in wildcats in human-dominated landscapes. Analyses using a panel of 75 autosomal SNPs suggested a low hybridization rate, with 3.5% of wildcat individuals being categorized as F1, F2, or backcrosses to either parental taxon. We report that results based on a set of SNPs were more consistent than on a set of 14 microsatellite markers, showed higher accuracy to detect hybrids and their class in simulation analyses, and were less affected by underlying population structure. Our results strongly suggest that very high hybridization rates previously reported for Central Europe may be partly due to inadequate choice of markers and/or sampling design. Our study documents that an adequately selected SNP panel for hybrid detection may be used as an alternative to commonly applied microsatellite markers, including studies relying on noninvasively collected samples. In addition, our finding of overall low hybridization rates in Central European wildcats provides an example of successful wildlife coexistence in human-dominated, fragmented landscapes.

4.
Sci Rep ; 7(1): 10768, 2017 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883428

RESUMO

Noninvasively collected samples are a common source of DNA in wildlife genetic studies. Currently, single nucleotide polymorphism (SNP) genotyping using microfluidic arrays is emerging as an easy-to-use and cost-effective methodology. Here we assessed the performance of microfluidic SNP arrays in genotyping noninvasive samples from grey wolves, European wildcats and brown bears, and we compared results with traditional microsatellite genotyping. We successfully SNP-genotyped 87%, 80% and 97% of the wolf, cat and bear samples, respectively. Genotype recovery was higher based on SNPs, while both marker types identified the same individuals and provided almost identical estimates of pairwise differentiation. We found that samples for which all SNP loci were scored had no disagreements across the three replicates (except one locus in a wolf sample). Thus, we argue that call rate (amplification success) can be used as a proxy for genotype quality, allowing the reduction of replication effort when call rate is high. Furthermore, we used cycle threshold values of real-time PCR to guide the choice of protocols for SNP amplification. Finally, we provide general guidelines for successful SNP genotyping of degraded DNA using microfluidic technology.


Assuntos
Animais Selvagens/genética , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Animais , Animais Selvagens/classificação , Gatos/classificação , Gatos/genética , Fezes , Cabelo , Microfluídica/métodos , Ursidae/classificação , Ursidae/genética , Lobos/classificação , Lobos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA