Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Compr Rev Food Sci Food Saf ; 22(6): 4302-4354, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37616018

RESUMO

Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.


Assuntos
Lipidômica , Lipídeos , Humanos , Lipidômica/métodos , Ácidos Graxos , Triglicerídeos , Frutas
2.
Molecules ; 26(13)2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-34206320

RESUMO

Type 2 diabetes (T2D) is a chronic metabolic disease, which could affect the daily life of patients and increase their risk of developing other diseases. Synthetic anti-diabetic drugs usually show severe side effects. In the last few decades, plant-derived drugs have been intensively studied, particularly because of a rapid development of the instruments used in analytical chemistry. We tested the efficacy of Gundelia tournefortii L. (GT) in increasing the translocation of glucose transporter-4 (GLUT4) to the myocyte plasma membrane (PM), as a main strategy to manage T2D. In this study, GT methanol extract was sub-fractionated into 10 samples using flash chromatography. The toxicity of the fractions on L6 muscle cells, stably expressing GLUTmyc, was evaluated using the MTT assay. The efficacy with which GLUT4 was attached to the L6 PM was evaluated at non-toxic concentrations. Fraction 6 was the most effective, as it stimulated GLUT4 translocation in the absence and presence of insulin, 3.5 and 5.2 times (at 250 µg/mL), respectively. Fraction 1 and 3 showed no significant effects on GLUT4 translocation, while other fractions increased GLUT4 translocation up to 2.0 times. Gas chromatography-mass spectrometry of silylated fractions revealed 98 distinct compounds. Among those compounds, 25 were considered anti-diabetic and glucose disposal agents. These findings suggest that GT methanol sub-fractions exert an anti-diabetic effect by modulating GLUT4 translocation in L6 muscle cells, and indicate the potential of GT extracts as novel therapeutic agents for T2D.


Assuntos
Asteraceae/química , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes , Células Musculares/metabolismo , Animais , Linhagem Celular , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/genética , Transportador de Glucose Tipo 4/genética , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Transporte Proteico/efeitos dos fármacos , Ratos
3.
Molecules ; 26(19)2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34641603

RESUMO

Jojoba (Simmondsia chinensis (Link) Schneider) wax is used for various dermatological and pharmaceutical applications. Several reports have previously shown beneficial properties of Jojoba wax and extracts, including antimicrobial activity. The current research aimed to elucidate the impact of Jojoba wax on skin residential bacterial (Staphylococcus aureus and Staphylococcus epidermidis), fungal (Malassezia furfur), and virus infection (herpes simplex 1; HSV-1). First, the capacity of four commercial wax preparations to attenuate their growth was evaluated. The results suggest that the growth of Staphylococcus aureus, Staphylococcus epidermidis, and Malassezia furfur was unaffected by Jojoba in pharmacologically relevant concentrations. However, the wax significantly attenuated HSV-1 plaque formation. Next, a complete dose-response analysis of four different Jojoba varieties (Benzioni, Shiloah, Hatzerim, and Sheva) revealed a similar anti-viral effect with high potency (EC50 of 0.96 ± 0.4 µg/mL) that blocked HSV-1 plaque formation. The antiviral activity of the wax was also confirmed by real-time PCR, as well as viral protein expression by immunohistochemical staining. Chemical characterization of the fatty acid and fatty alcohol composition was performed, showing high similarity between the wax of the investigated varieties. Lastly, our results demonstrate that the observed effects are independent of simmondsin, repeatedly associated with the medicinal impact of Jojoba wax, and that Jojoba wax presence is required to gain protection against HSV-1 infection. Collectively, our results support the use of Jojoba wax against HSV-1 skin infections.


Assuntos
Anti-Infecciosos/farmacologia , Antivirais/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Ceras/farmacologia , Acetonitrilas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Cicloexanos/farmacologia , Relação Dose-Resposta a Droga , Ácidos Graxos/química , Ácidos Graxos/farmacologia , Álcoois Graxos/química , Álcoois Graxos/farmacologia , Glucosídeos/farmacologia , Humanos , Malassezia/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Células Vero , Ceras/química
4.
Molecules ; 24(22)2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31731693

RESUMO

Naturally derived drugs and plant-based products are attractive commodities that are being explored for cancer treatment. This in vitro study aimed to investigate the role of Hypericum triquetrifolium (50% ethanol: 50% water) extract (HTE) treatment on apoptosis, cell cycle modulation, and cell cycle arrest in human colon cancer cell line (HCT-116). HTE induced cell death via an apoptotic process, as assayed by an Annexin V-Cy3 assay. Exposing HCT-116 cells to 0.064, 0.125, 0.25, and 0.5 mg/mL of HTE for 24 h led to 50 ± 9%, 71.6 ± 8%, 85 ± 5%, and 96 ± 1.5% apoptotic cells, respectively. HCT-116 cells treated with 0.25 and 0.5 mg/mL HTE for 3 h resulted in 38.9 ± 1.5% and 57.2 ± 3% cleavage of caspase-3-specific substrate, respectively. RT-PCR analysis revealed that the HTE extract had no effect on mRNA levels of Apaf-1 and NOXA. Moreover, the addition of 0.125 mg/mL and 0.25 mg/mL HTE for 24 h was clearly shown to attenuate the cell cycle progression machinery in HCT-116 cells. GC/MS analysis of the extract identified 21 phytochemicals that are known as apoptosis inducers and cell cycle arrest agents. All the compounds detected are novel in H. triquetrifolium. These results suggest that HTE-induced apoptosis of human colon cells is mediated primarily through the caspase-dependent pathway. Thus, HTE appears to be a potent therapeutic agent for colon cancer treatment.


Assuntos
Antineoplásicos Fitogênicos , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo , Hypericum/química , Extratos Vegetais , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Células HCT116 , Humanos , Extratos Vegetais/química , Extratos Vegetais/farmacologia
5.
J Sci Food Agric ; 99(3): 1180-1189, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30047164

RESUMO

BACKGROUND: Olive oil, a functional food, is increasingly produced from trees irrigated with water containing high concentrations of salts. We studied the effects of irrigation-induced salinity on quality and health-related compounds in olive oil. Trees (cv Barnea) were grown in lysimeters with continuous control and monitoring of root-zone salinity. Salinity in the root zone was altered by changing irrigation solution salinity or by changing the extent of leaching. Extracted oil was analyzed for quality parameters including free fatty acid content, polyphenol, tocopherol, sterol and carotenoid levels, fatty acid (FA) profile, and antioxidative capacity. RESULTS: While not all parameters changed, fruit water percentage and fruit oil content significantly decreased with increasing exposure to salt. As salinity increased, there was a desirable rise in measured polyphenol and tocopherol levels and a contrasting undesirable reduction in a number of important compounds, including 16:1 and 18:3 FA. CONCLUSION: The possible negative effects on olive oil quality due to FA-related parameters should concern producers dependent on, or considering, irrigation with high-salinity water sources. A number of important quality parameters were differentially influenced by the method of inducing the root zone salinity, suggesting that additional environmental variables leading to oxidative responses were affected by the treatments. © 2018 Society of Chemical Industry.


Assuntos
Olea/química , Azeite de Oliva/química , Óleos de Plantas/química , Irrigação Agrícola , Antioxidantes/química , Antioxidantes/metabolismo , Frutas/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Olea/crescimento & desenvolvimento , Olea/metabolismo , Azeite de Oliva/metabolismo , Óleos de Plantas/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Controle de Qualidade , Salinidade , Cloreto de Sódio/análise , Cloreto de Sódio/metabolismo
6.
Crit Rev Food Sci Nutr ; 58(11): 1888-1901, 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-28350213

RESUMO

Morels are edible mushrooms appreciated worldwide for their savory flavor. Morels have been in use in traditional medicine for centuries, due to their health-related benefits, and current research demonstrated their anti-oxidative and anti-inflammatory bioactivities, in addition to immunostimulatory and anti-tumor properties. In spite of the high demand for morels and their increasing economic importance, their cultivation is limited, and they are either used as wild harvested or fermented in culture, for consumption as a functional food and for food-flavoring. Morel's health benefits were attributed mainly to polysaccharides as the active compounds, and to various phytochemicals, mainly phenolic compounds, tocopherols, ascorbic acid and vitamin D. Morel's nutritional composition was reported, including sugar, amino acid, fatty and organic acid and mineral profile. Information regarding Morel's flavor is limited, and while some of their taste attributes have been described, including the role of umami taste, details about their volatile aroma profile are scarce, and it was reported to include eight carbon volatiles, the main aroma volatiles typical to most mushrooms. To the best of our knowledge, this is the first review presenting morels' nutritional and phytochemical composition, health benefits and flavor, and we will review the available information in current literature regarding these aspects in light of morels phenotypic plasticity.


Assuntos
Agaricales/química , Ascomicetos/química , Paladar , Antioxidantes/análise , Ácido Ascórbico/análise , Fermentação , Humanos , Valor Nutritivo , Odorantes , Fenóis/análise , Polissacarídeos/análise , Tocoferóis/análise , Vitamina D/análise , Compostos Orgânicos Voláteis/análise
7.
J Sci Food Agric ; 98(1): 346-353, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28597472

RESUMO

BACKGROUND: A headspace solid-phase microextraction method with gas chromatography-mass spectrometry was used to profile the aroma volatiles of mature fruiting bodies of Morchella importuna grown in Israel. RESULTS: We tentatively identified 40 aroma compounds and seven unknown volatiles. The M. importuna aroma profile consisted of 14 aldehydes, six alcohols, 10 methyl esters, four heterocyclic/sulfur compounds, 10 carbohydrates and three other compounds (i.e. one acid, one ketone and one butyl ester). The most abundant volatiles were carbohydrates, with a total relative peak area of 29.3%, followed by alcohols (27.7%), aldehydes (21.6%), methyl esters (10.8%), heterocyclic/sulfur compounds (3.1%) and other compounds (5.8%). The 8-carbon (C8) compounds imparting typical mushroom-like aroma were very abundant in M. importuna, accounting for 27.9% of the total peak area and including, amongst others, 1-octen-3-ol (80% of total C8), octanal and 2-octenal (Z- and E-). CONCLUSION: The aroma volatile profile of morels has much in common with that of other mushrooms, with a few unique characteristics. To our knowledge, this is the first detailed report of the aroma profile of M. importuna. © 2017 Society of Chemical Industry.


Assuntos
Ascomicetos/química , Compostos Orgânicos Voláteis/química , Ascomicetos/crescimento & desenvolvimento , Ascomicetos/metabolismo , Carpóforos/química , Carpóforos/crescimento & desenvolvimento , Carpóforos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Israel , Odorantes/análise , Compostos Orgânicos Voláteis/metabolismo
8.
Plant Cell Rep ; 36(5): 731-743, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28289884

RESUMO

KEY MESSAGE: Enzymes operating in the S -methylmethionine cycle make a differential contribution to methionine synthesis in seeds. In addition, mutual effects exist between the S -methylmethionine cycle and the aspartate family pathway in seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. The previous lines of evidence proposed that the S-methylmethionine (SMM) cycle contributes to methionine synthesis in seeds where methionine that is produced in non-seed tissues is converted to SMM and then transported via the phloem into the seeds. However, the relative regulatory roles of the S-methyltransferases operating within this cycle in seeds are yet to be fully understood. In the current study, we generated transgenic Arabidopsis seeds with altered expression of three HOMOCYSTEINE S-METHYLTRANSFERASEs (HMTs) and METHIONINE S-METHYLTRANSFERASE (MMT), and profiled them for transcript and metabolic changes. The results revealed that AtHMT1 and AtHMT3, but not AtHMT2 and AtMMT, are the predominant enzymes operating in seeds as altered expression of these two genes affected the levels of methionine and SMM in transgenic seeds. Their manipulations resulted in adapted expression level of genes participating in methionine synthesis through the SMM and aspartate family pathways. Taken together, our findings provide new insights into the regulatory roles of the SMM cycle and the mutual effects existing between the two methionine biosynthesis pathways, highlighting the complexity of the metabolism of methionine and SMM in seeds.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Metionina/metabolismo , Sementes/metabolismo , Vitamina U/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Metionina/análogos & derivados , Metiltransferases/genética , Metiltransferases/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética
9.
Front Plant Sci ; 15: 1425733, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39129760

RESUMO

Jojoba wax is gaining popularity among cosmetics consumers for its skin wound healing and rejuvenation bioactivities, attributed to collagen and hyaluronic acid synthesis. However, information regarding wax phytochemical composition and quality parameters, as well as effect of cultivation practices, and fertilization in particular, on wax quality is limited. The aim of the current work was to study the effect of nitrogen (N) availability to jojoba plants on wax phytochemical composition and beneficial skin-related contents. For this, wax quality from a six-year fertilization experiment with five N application levels was evaluated. The chemical parameters included antioxidant activity, free fatty acid, total tocopherol, total phytosterol and oxidative stability, as well as fatty acid and fatty alcohol profile. Our results reveal that the majority of wax quality traits were affected by N fertilization level, either positively or negatively. Interestingly, while fatty acids were unaffected, fatty alcohol composition was significantly altered by N level. Additionally, fruit load also largely affected wax quality, and, due to jojoba's biennial alternate bearing cycles, harvest year significantly affected all measured parameters. Results shed light on the effects of N application on various biochemical constituents of jojoba wax, and imply that N availability should be considered part of the entire agricultural management plan to enhance wax quality. Some traits are also suggested as possible chemical quality parameters for jojoba wax.

10.
Front Pharmacol ; 15: 1333085, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38344180

RESUMO

Jojoba (Simmondsia chinensis L.) wax was previously reported to increase cutaneous wound healing, ameliorate acne and psoriasis manifestations, and reduce oxidative stress and inflammation. However, its potential cosmetic properties have not been fully investigated. Thus, the current study aimed to evaluate the anti-inflammatory activities of jojoba wax and its impact on the synthesis of extracellular components following topical application. The fatty acid and fatty alcohol profiles of two industrial and two lab-scale cold-press jojoba waxes were analyzed along with total tocopherol and phytosterol content. The dermo-cosmetic effect of all jojoba wax preparations was evaluated ex-vivo, using the human skin organ culture model, which emulates key features of intact tissue. The ability of jojoba wax to reduce secreted levels of key pro-inflammatory cytokines and the safety of the applications in the ex-vivo model were evaluated. In addition, the impact on the synthesis of pro-collagen and hyaluronic acid levels upon treatment was investigated. The results demonstrate that topically applied jojoba wax can reduce LPS-induced secretion of IL-6, IL-8, and TNFα by approx. 30% compared to untreated skin. This effect was enhanced when treatment was combined with low non-toxic levels of Triton X-100, and its efficacy was similar to the anti-inflammatory activity of dexamethasone used as a positive control. In addition, mRNA and protein levels of collagen III and synthesis of hyaluronic acid were markedly increased upon topical application of jojoba. Moreover, the enhanced content of extracellular matrix (ECM) components correlated with the enhanced expression of TGFß1. Collectively, our results further demonstrate that jojoba can reduce local skin inflammation, and this effect may be increased by emulsifier which increases its bioavailability. In addition, the finding that topical application of jojoba wax enhances the synthesis of pro-collagen and hyaluronic acid and may be beneficial in the treatment of age-related manifestations.

11.
Prog Lipid Res ; 96: 101290, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39094698

RESUMO

Plants and algae play a crucial role in the earth's ecosystems. Through photosynthesis they convert light energy into chemical energy, capture CO2 and produce oxygen and energy-rich organic compounds. Photosynthetic organisms are primary producers and synthesize the essential omega 3 and omega 6 fatty acids. They have also unique and highly diverse complex lipids, such as glycolipids, phospholipids, triglycerides, sphingolipids and phytosterols, with nutritional and health benefits. Plant and algal lipids are useful in food, feed, nutraceutical, cosmeceutical and pharmaceutical industries but also for green chemistry and bioenergy. The analysis of plant and algal lipidomes represents a significant challenge due to the intricate and diverse nature of their composition, as well as their plasticity under changing environmental conditions. Optimization of analytical tools is crucial for an in-depth exploration of the lipidome of plants and algae. This review highlights how lipidomics analytical tools can be used to establish a complete mapping of plant and algal lipidomes. Acquiring this knowledge will pave the way for the use of plants and algae as sources of tailored lipids for both industrial and environmental applications. This aligns with the main challenges for society, upholding the natural resources of our planet and respecting their limits.

12.
Langmuir ; 29(25): 7922-30, 2013 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-23713788

RESUMO

We have studied interfacial compressibility and lateral organization in monolayer configurations of total (squalene containing) and polar (squalene-devoid) lipid extracts of Halobacterium salinarum NRC-1, an extremely halophilic archaeon. Pressure-area isotherms derived from Langmuir experiments reveal that packing characteristics and elastic compressibility are strongly influenced by the presence of squalene in the total lipid extract. In conjunction with control experiments using mixtures of DPhPC and squalene, our results establish that the presence of squalene significantly extends elastic area compressibility of total lipid extracts, suggesting it has a role in facilitating tighter packing of archaeal lipid mixtures. Moreover, we find that squalene also influences spatial organization in archaeal membranes. Epifluorescence and atomic force microscopy characterization of Langmuir monolayers transferred onto solid hydrophilic substrates reveal an unusual domain morphology. Individual domains of microscopic dimensions (as well as their extended networks) exhibiting a peculiar bowl-like topography are evident in atomic force microscopy images. The tall rims outlining individual domains indicate that squalene accumulates at the domain periphery in a manner similar to the accumulation of cholesterol at domain boundaries in their mixtures with phospholipids. Taken together, the results presented here support the notion that squalene plays a role in modulating molecular packing and lateral organization (i.e., domain formation) in the membranes of archaea analogous to that of cholesterol in eukaryotic membranes.


Assuntos
Halobacterium salinarum/química , Lipídeos/química , Esqualeno/química , Ar , Cromatografia em Camada Fina , Microscopia de Força Atômica , Água/química
13.
Plants (Basel) ; 12(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687378

RESUMO

Although jojoba (Simmondsia chinensis) has been cultivated for years, information on its N requirements is limited. A 6-year study of mature jojoba plants grown under field conditions with an intensive management regime evaluated the effect of N application rate on plant nutrient status, growth, and productivity, and nitrate accumulation in the soil. Five levels of N application were tested: 50, 150, 250, 370, and 500 kg N ha-1. Fertilizers were provided throughout the growing season via a subsurface drip irrigation system. Leaf N concentration, in both spring and summer, reflected the level of N applied. A diagnostic leaf (youngest leaf that has reached full size) concentration of 1.3% N was identified as the threshold for N deficiency. Increasing rates of N application resulted in higher P levels in young leaves. Plant K status, as reflected in the leaf analysis, was not affected by N treatment but was strongly affected by fruit load. Vegetative growth was inhibited when only 50 kg N ha-1 was applied. Soil analysis at the end of the fertilization season showed substantial accumulation of nitrate for the two highest application rates. Considering productivity, N costs, and environmental risk, 150 kg N ha-1 is the recommended dosage for intensively grown jojoba. N deficiencies can be identified using leaf analysis, and excess N can be detected via soil sampling toward the end of the growing season. These results and tools will facilitate precise N fertilization in intensive jojoba plantations.

14.
Pharmaceutics ; 15(3)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986806

RESUMO

Orthosiphon stamineus is a popular folk herb used to treat diabetes and some other disorders. Previous studies have shown that O. stamineus extracts were able to balance blood glucose levels in diabetic rat animal models. However, the antidiabetic mechanism of O. stamineus is not fully known. This study was carried out to test the chemical composition, cytotoxicity, and antidiabetic activity of O. stamineus (aerial) methanol and water extracts. GC/MS phytochemical analysis of O. stamineus methanol and water extracts revealed 52 and 41 compounds, respectively. Ten active compounds are strong antidiabetic candidates. Oral treatment of diabetic mice with O. stamineus extracts for 3 weeks resulted significant reductions in blood glucose levels from 359 ± 7 mg/dL in diabetic non-treated mice to 164 ± 2 mg/dL and 174 ± 3 mg/dL in water- and methanol-based-extract-treated mice, respectively. The efficacy of O. stamineus extracts in augmenting glucose transporter-4 (GLUT4) translocation to the plasma membrane (PM) was tested in a rat muscle cell line stably expressing myc-tagged GLUT4 (L6-GLUT4myc) using enzyme-linked immunosorbent assay. The methanol extract was more efficient in enhancing GLUT4 translocation to the PM. It increased GLUT4 translocation at 250 µg/mL to 279 ± 15% and 351 ± 20% in the absence and presence of insulin, respectively. The same concentration of water extract enhanced GLUT4 translocation to 142 ± 2.5% and 165 ± 5% in the absence and presence of insulin, respectively. The methanol and water extracts were safe up to 250 µg/mL as measured with a Methylthiazol Tetrazolium (MTT) cytotoxic assay. The extracts exhibited antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. O. stamineus methanol extract reached the maximal inhibition of 77 ± 10% at 500 µg/mL, and O. stamineus water extract led to 59 ± 3% inhibition at the same concentration. These findings indicate that O. stamineus possesses antidiabetic activity in part by scavenging the oxidants and enhancing GLUT4 translocation to the PM in skeletal muscle.

15.
Antioxidants (Basel) ; 12(1)2022 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-36670894

RESUMO

Reactive oxygen species (ROS) and oxidative stress increase susceptibility to neurodegeneration and other age-related pathologies. We have previously demonstrated that an infusion prepared from Pulicaria incisa (Pi) has protective, anti-inflammatory, and antioxidative effects in glial cells. However, the neuroprotective activities of Pi infusion in cultured neurons and aging mice have never been studied. In the following study, the effects of Pi infusion were explored in a hydrogen peroxide (H2O2)-induced oxidative stress model in SH-SY5Y human neuroblastoma cells. Profiling of the infusion by gas chromatography-mass spectrometry identified chlorogenic acid, quercetin, and aucubin as some of its main constituents. H2O2-induced ROS accumulation and caspase 3 activity decreased SH-SY5Y viability and were prevented upon the pretreatment of cells with Pi infusion. Additionally, the Pi infusion upregulated cellular levels and the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as the phosphorylation of cyclic AMP response element-binding protein (CREB). Aging mice treated daily for 18 months with Pi infusion exhibited reduced neuronal cell death in the hippocampus as compared to age-matched controls. We, therefore, propose Pi infusion as a candidate regulator of oxidative stress in the brain.

16.
Talanta ; 247: 123545, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35597022

RESUMO

Half of the harvested food is lost due to rots caused by microorganisms. Plants emit various volatile organic compounds (VOCs) into their surrounding environment, and the VOC profiles of healthy crops are altered upon infection. In this study, a whole-cell bacterial biosensor was used for the early identification of potato tuber soft rot disease caused by the pectinolytic bacteria Pectobacterium in potato tubers. The detection is based on monitoring the luminescent responses of the bacteria panel to changes in the VOC profile following inoculation. First, gas chromatography-mass spectrometry (GC-MS) was used to specify the differences between the VOC patterns of the inoculated and non-inoculated potato tubers during early infection. Five VOCs were identified, 1-octanol, phenylethyl alcohol, 2-ethyl hexanol, nonanal, and 1-octen-3-ol. Then, the infection was detected by the bioreporter bacterial panel, firstly measured in a 96-well plate in solution, and then also tested in potato plugs and validated in whole tubers. Examination of the bacterial panel responses showed an extensive cytotoxic effect over the testing period, as seen by the elevated induction factor (IF) values in the bacterial strain TV1061 after exposure to both potato plugs and whole tubers. Moreover, quorum sensing influences were also observed by the elevated IF values in the bacterial strain K802NR. The developed whole-cell biosensor system based on bacterial detection will allow more efficient crop management during postharvest, storage, and transport of crops, to reduce food losses.


Assuntos
Técnicas Biossensoriais , Pectobacterium , Solanum tuberosum , Compostos Orgânicos Voláteis , Doenças das Plantas
17.
J Sci Food Agric ; 91(15): 2794-8, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21725980

RESUMO

BACKGROUND: The traditional guava variety cultivated in Israel, 'Ben Dov', emits a very strong odour, whereas some newly bred varieties have a mild odour. In this study the aroma profile composition of the high-aromatic 'Ben Dov' variety was compared with those of four new low-aromatic varieties. RESULTS: Overall, using gas chromatography/mass spectrometry, a total of 30 aroma volatiles were detected in fresh ripe guava fruit: 15 of them were specifically detected only in the high-aromatic 'Ben Dov' variety, 13 were detected in both the high- and low-aromatic varieties and two were detected only in the new low-aromatic varieties. Interestingly, 11 out of the 15 volatiles specifically detected in 'Ben Dov' were esters that contribute sweet, tropical and fruity notes. In contrast, ten out of 13 detected terpenes and two detected aldehydes, contributing green, spicy, herbal and woody notes, were common to both the high- and low-aromatic varieties. CONCLUSION: Based on these findings, it is concluded that accumulation of esters is the main reason why the traditional 'Ben Dov' guava variety emits such a strong tropical fruity odour. In contrast, the newly bred low-aromatic guava varieties did not synthesise esters at all and thus lacked fruity aromatic notes. Overall, the results of this study point out the important role of esters in forming tropical fruity guava odours.


Assuntos
Aldeídos/análise , Frutas/química , Odorantes/análise , Psidium/química , Terpenos/análise , Compostos Orgânicos Voláteis/análise , Ésteres/análise , Cromatografia Gasosa-Espectrometria de Massas , Israel , Psidium/classificação , Especificidade da Espécie
18.
J Sci Food Agric ; 91(1): 14-23, 2011 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20812381

RESUMO

During the last decade there has been a continuous rise in consumption of fresh easy-to-peel mandarins. However, mandarins are much more perishable than other citrus fruit, mainly due to rapid deterioration in sensory acceptability after harvest. In the current review we discuss the biochemical components involved in forming the unique flavor of mandarins, and how postharvest storage operations influence taste and aroma and consequently consumer sensory acceptability. What we perceive as mandarin flavor is actually the combination of basic taste, aroma and mouth-feel. The taste of mandarins is principally governed by the levels of sugars and acids in the juice sacs and the relative ratios among them, whereas the aroma of mandarins is derived from a mixture of different aroma volatiles, including alcohols, aldehydes, ketones, terpenes/hydrocarbons and esters. During postharvest storage and marketing there is a gradual decrease in mandarin sensory acceptability, which has been attributed to decreases in acidity and typical mandarin flavor, paralleling an accumulation of off-flavor. Biochemical analysis of volatile and non-volatile constituents in mandarin juice demonstrated that these changes in sensory acceptability were concomitant with decreases in acidity and content of terpenes and aldehydes, which provide green, piney and citrus aroma on the one hand, and increases in ethanol fermentation metabolism products and esters on the other, which are likely to cause 'overripe' and off-flavors. Overall, we demonstrate the vast importance of the genetic background, maturity stage at harvest, commercial postharvest operation treatments, including curing, degreening and waxing, and storage duration on mandarin sensory quality.


Assuntos
Citrus/química , Frutas/química , Odorantes/análise , Olfato , Paladar , Manipulação de Alimentos/métodos
19.
OMICS ; 25(5): 294-301, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33904794

RESUMO

Diabetes is a common chronic disease where therapeutics innovation is much needed. The search for novel antidiabetic molecules can be greatly facilitated by high throughput metabolomic characterization of herbal medicines. Cassia auriculata is a shrub used in Ayurvedic medicine and native to India and Sri Lanka. While C. auriculata has been used as a medicinal herb in diabetes, the molecular evidence for its antidiabetic medicinal potentials and components needs to be established. Moreover, the phytocomposition of the various plant parts is not fully known. We report a comprehensive metabolomic gas chromatography mass spectrometry study of the C. auriculata plant parts, including the leaf, flower, and bud. We identified a total of 102 primary and secondary metabolites in seven chemical groups, including amino acids (AA), carboxylic acids, nucleosides, fatty acids, among others. Interestingly, plant parts differed in their metabolomic signatures. While in the flowers and leaves nine and six AA were identified, respectively, no AA was detected in the buds. Some of the identified compounds have been previously noted for their antidiabetic, hypoglycemic, and hypolipidemic bioactivities. These findings offer a concrete metabolomic basis on the phytocomposition of individual C. auriculata plant parts. These omics data call for future research on the function of the identified compounds, and clinical studies to further evaluate their antidiabetic potentials and mechanisms of action in the clinic. Finally, we note that plant omics research offers an important avenue to inform, verify, and strengthen the evidentiary base and clinical testing of herbs with medicinal potentials.


Assuntos
Cassia , Hipoglicemiantes , Flores , Metabolômica , Extratos Vegetais/farmacologia , Folhas de Planta
20.
J Sci Food Agric ; 90(6): 995-1007, 2010 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-20355140

RESUMO

BACKGROUND: Mandarins suffer from accumulation of off-flavours after harvest. In this study the sensory quality and aroma profile composition of homogenised segments of untreated (control) and wax-coated 'Mor' mandarins after 7 days at 20 degrees C or 3 or 6 weeks of cold storage at 5 degrees C were examined. RESULTS: Fruit taste score decreased during storage and following wax coating, and this was attributed to decreases in sourness and mandarin flavour and accumulation of off-flavours. Aroma profiling identified 31 volatiles that decreased by at least 50% during storage and after waxing and thus may be involved in the observed flavour loss. In contrast, 13 volatiles, mostly belonging to ethanol fermentation and fatty acid and amino acid catabolism pathways, significantly increased at least twofold and probably contributed to off-flavour enhancement. CONCLUSION: The results showed that after harvest there was a progressive decrease in sensory quality of 'Mor' mandarins. It is proposed that observed decreases in contents of sesqui- and monoterpenes and short-chain oxygenated fatty acids may contribute to the decrease in mandarin flavour, whereas increases in the contents of ethanol fermentation metabolites and derivates of fatty acid and amino acid catabolism are most likely involved in causing the enhanced sensation of off-flavours.


Assuntos
Citrus/química , Manipulação de Alimentos/métodos , Frutas/química , Odorantes , Paladar , Compostos Orgânicos Voláteis/análise , Ceras , Adulto , Feminino , Frutas/normas , Humanos , Masculino , Redes e Vias Metabólicas , Pessoa de Meia-Idade , Volatilização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA