Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 102: 129679, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38423371

RESUMO

Seven furanochromene-quinoline derivatives containing a hydrazone linker were synthesized by condensing a furanochromene hydrazide with quinoline 2-, 3-, 4-, 5-, 6-, and 8-carbaldehydes, including 8-hydroxyquinoline-2-carbaldehye. Structure-activity correlations were investigated to determine the influence of the location of the hydrazone linker on the quinoline unit on SARS-CoV-2 Mpro enzyme inhibition. The 3-, 5-, 6- and 8-substituted derivatives showed moderate inhibition of SARS-CoV-2 Mpro with IC50 values ranging from 16 to 44 µM. Additionally, all of the derivatives showed strong interaction with the SARS-CoV-2 Mpro substrate binding pocket, with docking energy scores ranging from -8.0 to -8.5 kcal/mol. These values are comparable to that of N3 peptide (-8.1 kcal/mol) and more favorable than GC-373 (-7.6 kcal/mol) and ML-188 (-7.5 kcal/mol), all of which are known SARS-CoV-2 Mpro inhibitors. Furthermore, in silico absorption, distribution, metabolism, and excretion (ADME) profiles indicate that the derivatives have good drug-likeness properties. Overall, this study highlights the potential of the furanochromene-quinoline hydrazone scaffold as a SARS-CoV-2 Mpro inhibitor.


Assuntos
COVID-19 , Proteases 3C de Coronavírus , Quinolinas , Humanos , Hidrazonas/farmacologia , Simulação de Acoplamento Molecular , SARS-CoV-2 , Quinolinas/farmacologia , Inibidores de Proteases/farmacologia , Simulação de Dinâmica Molecular
2.
J Nat Prod ; 87(6): 1513-1520, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781491

RESUMO

Current small-molecule-based SARS-CoV-2 treatments have limited global accessibility and pose the risk of inducing viral resistance. Therefore, a marine algae and cyanobacteria extract library was screened for natural products that could inhibit two well-defined and validated COVID-19 drug targets, disruption of the spike protein/ACE-2 interaction and the main protease (Mpro) of SARS-CoV-2. Following initial screening of 86 extracts, we performed an untargeted metabolomic analysis of 16 cyanobacterial extracts. This approach led to the isolation of an unusual saturated fatty acid, jobosic acid (2,5-dimethyltetradecanoic acid, 1). We confirmed that 1 demonstrated selective inhibitory activity toward both viral targets while retaining some activity against the spike-RBD/ACE-2 interaction of the SARS-CoV-2 omicron variant. To initially explore its structure-activity relationship (SAR), the methyl and benzyl ester derivatives of 1 were semisynthetically accessed and demonstrated acute loss of bioactivity in both SARS-CoV-2 biochemical assays. Our efforts have provided copious amounts of a fatty acid natural product that warrants further investigation in terms of SAR, unambiguous determination of its absolute configuration, and understanding of its specific mechanisms of action and binding site toward new therapeutic avenues for SARS-CoV-2 drug development.


Assuntos
Antivirais , Metabolômica , SARS-CoV-2 , SARS-CoV-2/efeitos dos fármacos , Antivirais/farmacologia , Antivirais/química , Antivirais/isolamento & purificação , Humanos , Cianobactérias/química , Relação Estrutura-Atividade , Ácidos Graxos/química , Ácidos Graxos/farmacologia , COVID-19 , Estrutura Molecular , Proteases 3C de Coronavírus/antagonistas & inibidores , Proteases 3C de Coronavírus/metabolismo
3.
Med Chem Res ; 33(4): 620-634, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646411

RESUMO

Isatin (indol-2,3-dione), a secondary metabolite of tryptophan, has been used as the core structure to design several compounds that have been tested and identified as potent inhibitors of apoptosis, potential antitumor agents, anticonvulsants, and antiviral agents. In this work, several analogs of isatin hybrids have been synthesized and characterized, and their activities were established as inhibitors of both Aurora A kinase and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike/host angiotensin-converting enzyme II (ACE2) interactions. Amongst the synthesized isatin hybrids, compounds 6a, 6f, 6g, and 6m exhibited Aurora A kinase inhibitory activities (with IC50 values < 5 µM), with GScore values of -7.9, -7.6, -8.2 and -7.7 kcal/mol, respectively. Compounds 6g and 6i showed activities in blocking SARS-CoV-2 spike/ACE2 binding (with IC50 values in the range < 30 µM), with GScore values of -6.4 and -6.6 kcal/mol, respectively. Compounds 6f, 6g, and 6i were both capable of inhibiting spike/ACE2 binding and blocking Aurora A kinase. Pharmacophore profiling indicated that compound 6g tightly fits Aurora A kinase and SARS-CoV-2 pharmacophores, while 6d fits SARS-CoV-2 and 6l fits Aurora A kinase pharmacophore. This work is a proof of concept that some existing cancer drugs may possess antiviral properties. Molecular modeling showed that the active compound for each protein adopted different binding modes, hence interacting with a different set of amino acid residues in the binding site. The weaker activities against spike/ACE2 could be explained by the small sizes of the ligands that fail to address the important interactions for binding to the ACE2 receptor site.

4.
Chem Zvesti ; 78(6): 3431-3441, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38685970

RESUMO

Chemical prototypes with broad-spectrum antiviral activity are important toward developing new therapies that can act on both existing and emerging viruses. Binding of the SARS-CoV-2 spike protein to the host angiotensin-converting enzyme 2 (ACE2) receptor is required for cellular entry of SARS-CoV-2. Toward identifying new chemical leads that can disrupt this interaction, including in the presence of SARS-CoV-2 adaptive mutations found in variants like omicron that can circumvent vaccine, immune, and therapeutic antibody responses, we synthesized 5-chloro-3-(2-(2,4-dinitrophenyl)hydrazono)indolin-2-one (H2L) from the condensation reaction of 5-chloroisatin and 2,4-dinitrophenylhydrazine in good yield. H2L was characterised by elemental and spectral (IR, electronic, Mass) analyses. The NMR spectrum of H2L indicated a keto-enol tautomerism, with the keto form being more abundant in solution. H2L was found to selectively interfere with binding of the SARS-CoV-2 spike receptor-binding domain (RBD) to the host angiotensin-converting enzyme 2 receptor with a 50% inhibitory concentration (IC50) of 0.26 µM, compared to an unrelated PD-1/PD-L1 ligand-receptor-binding pair with an IC50 of 2.06 µM in vitro (Selectivity index = 7.9). Molecular docking studies revealed that the synthesized ligand preferentially binds within the ACE2 receptor-binding site in a region distinct from where spike mutations in SARS-CoV-2 variants occur. Consistent with these models, H2L was able to disrupt ACE2 interactions with the RBDs from beta, delta, lambda, and omicron variants with similar activities. These studies indicate that H2L-derived compounds are potential inhibitors of multiple SARS-CoV-2 variants, including those capable of circumventing vaccine and immune responses. Supplementary Information: The online version contains supplementary material available at 10.1007/s11696-023-03274-5.

5.
Antimicrob Agents Chemother ; 67(4): e0160022, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36975214

RESUMO

Despite effective combination antiretroviral therapy (cART), people living with HIV (PLWH) continue to harbor replication-competent and transcriptionally active virus in infected cells, which in turn can lead to ongoing viral antigen production, chronic inflammation, and increased risk of age-related comorbidities. To identify new agents that may inhibit postintegration HIV beyond cART, we screened a library of 512 pure compounds derived from natural products and identified (-)-hopeaphenol as an inhibitor of HIV postintegration transcription at low to submicromolar concentrations without cytotoxicity. Using a combination of global RNA sequencing, plasmid-based reporter assays, and enzyme activity studies, we document that hopeaphenol inhibits protein kinase C (PKC)- and downstream NF-κB-dependent HIV transcription as well as a subset of PKC-dependent T-cell activation markers, including interleukin-2 (IL-2) cytokine and CD25 and HLA-DRB1 RNA production. In contrast, it does not substantially inhibit the early PKC-mediated T-cell activation marker CD69 production of IL-6 or NF-κB signaling induced by tumor necrosis factor alpha (TNF-α). We further show that hopeaphenol can inhibit cyclin-dependent kinase 9 (CDK9) enzymatic activity required for HIV transcription. Finally, it inhibits HIV replication in peripheral blood mononuclear cells (PBMCs) infected in vitro and dampens viral reactivation in CD4+ cells from PLWH. Our study identifies hopeaphenol as a novel inhibitor that targets a subset of PKC-mediated T-cell activation pathways in addition to CDK9 to block HIV expression. Hopeaphenol-based therapies could complement current antiretroviral therapy otherwise not targeting cell-associated HIV RNA and residual antigen production in PLWH.


Assuntos
Infecções por HIV , Estilbenos , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína Quinase C/genética , Quinase 9 Dependente de Ciclina/metabolismo , Leucócitos Mononucleares/metabolismo , Replicação Viral , Latência Viral , Estilbenos/farmacologia , Infecções por HIV/metabolismo , RNA
6.
J Pharmacol Exp Ther ; 386(1): 4-14, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36958846

RESUMO

Divalent metal transporter 1 (DMT1) cotransports ferrous iron and protons and is the primary mechanism for uptake of nonheme iron by enterocytes. Inhibitors are potentially useful as therapeutic agents to treat iron overload disorders such as hereditary hemochromatosis or ß-thalassemia intermedia, provided that inhibition can be restricted to the duodenum. We used a calcein quench assay to identify human DMT1 inhibitors. Dimeric compounds were made to generate more potent compounds with low systemic exposure. Direct block of DMT1 was confirmed by voltage clamp measurements. The lead compound, XEN602, strongly inhibits dietary nonheme iron uptake in both rats and pigs yet has negligible systemic exposure. Efficacy is maintained for >2 weeks in a rat subchronic dosing assay. Doses that lowered iron content in the spleen and liver by >50% had no effect on the tissue content of other divalent cations except for cobalt. XEN602 represents a powerful pharmacological tool for understanding the physiologic function of DMT1 in the gut. SIGNIFICANCE STATEMENT: This report introduces methodology to develop potent, gut-restricted inhibitors of divalent metal transporter 1 (DMT1) and identifies XEN602 as a suitable compound for in vivo studies. We also report novel animal models to quantify the inhibition of dietary uptake of iron in both rodents and pigs. This research shows that inhibition of DMT1 is a promising means to treat iron overload disorders.


Assuntos
Sobrecarga de Ferro , Humanos , Ratos , Animais , Suínos , Sobrecarga de Ferro/tratamento farmacológico , Ferro/metabolismo , Transporte Biológico , Proteínas de Ligação ao Ferro/metabolismo , Modelos Animais
7.
J Nat Prod ; 86(3): 557-565, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36799121

RESUMO

The known Eremophila microtheca-derived diterpenoid 3,7,8-trihydroxyserrulat-14-en-19-oic acid (1) was targeted for large-scale purification, as this bioactive plant compound has proven to be an attractive scaffold for semisynthetic studies and subsequent library generation. Compound 1 was converted to a selectively protected trimethyl derivative, 3-hydroxy-7,8-dimethoxyserrulat-14-en-19-oic acid methyl ester (2), using simple and rapid methylation conditions. The resulting scaffold 2 was reacted with a diverse series of commercially available isocyanates to generate an 11-membered carbamate-based library. The chemical structures of the 11 new semisynthetic analogues were fully characterized by spectroscopic and spectrometric analysis. All natural products and semisynthetic compounds were evaluated for their anthelmintic, antimalarial, and anti-HIV activities. Compound 3 was shown to elicit the greatest antiplasmodial activity of all compounds tested, with IC50 values of 4.6 and 11.6 µM against Plasmodium falciparum 3D7 and Dd2, respectively. Compound 11 showed the greatest inhibition of development to fourth-stage Haemonchus contortus larvae (L4) and induction of a skinny (Ski) phenotype (67.5% of nematodes) at 50 µM. Compound 7, which inhibited 59.0% of HIV production at 100 µg/mL, was the carbamate analogue that displayed the best antiviral activity.


Assuntos
Anti-Infecciosos , Antimaláricos , Produtos Biológicos , Carbamatos , Extratos Vegetais/química , Antimaláricos/farmacologia , Antimaláricos/química , Produtos Biológicos/química , Plasmodium falciparum
8.
J Nat Prod ; 86(3): 582-588, 2023 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-36657039

RESUMO

Thorectidiols isolated from the marine sponge Dactylospongia elegans (family Thorectidae, order Dictyoceratida) collected in Papua New Guinea are a family of symmetrical and unsymmetrical dimeric biphenyl meroterpenoid stereoisomers presumed to be products of oxidative phenol coupling of a co-occurring racemic monomer, thorectidol (3). One member of the family, thorectidiol A (1), has been isolated in its natural form, and its structure has been elucidated by analysis of NMR, MS, and ECD data. Acetylation of the sponge extract facilitated isolation of additional thorectidiol diacetate stereoisomers and the isolation of the racemic monomer thorectidol acetate (6). Racemic thorectidiol A (1) showed selective inhibition of the SARS-CoV-2 spike receptor binding domain (RBD) interaction with the host ACE2 receptor with an IC50 = 1.0 ± 0.7 µM.


Assuntos
COVID-19 , Poríferos , Animais , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/metabolismo , Ligação Proteica , Poríferos/metabolismo
9.
Anal Bioanal Chem ; 414(13): 3971-3985, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35419694

RESUMO

SARS-CoV-2, the causative agent of COVID-19, continues to cause global morbidity and mortality despite the increasing availability of vaccines. Alongside vaccines, antivirals are urgently needed to combat SARS-CoV-2 infection and spread, particularly in resource-limited regions which lack access to existing therapeutics. Small molecules isolated from medicinal plants may be able to block cellular entry by SARS-CoV-2 by antagonising the interaction of the viral spike glycoprotein receptor-binding domain (RBD) with the host angiotensin-converting enzyme II (ACE2) receptor. As the medicinal plant Gunnera perpensa L. is being used by some South African traditional healers for SARS-CoV-2/COVID-19 management, we hypothesised that it may contain chemical constituents that inhibit the RBD-ACE2 interaction. Using a previously described AlphaScreen-based protein interaction assay, we show here that the DCM:MeOH extract of G. perpensa readily disrupts RBD (USA-WA1/2020)-ACE2 interactions with a half-maximal inhibition concentration (IC50) of < 0.001 µg/mL, compared to an IC50 of 0.025 µg/mL for the control neutralising antibody REGN10987. Employing hyphenated analytical techniques like UPLC-IMS-HRMS (method developed and validated as per the International Conference on Harmonization guidelines), we identified two ellagitannins, punicalin (2.12% w/w) and punicalagin (1.51% w/w), as plant constituents in the DCM:MeOH extract of G. perpensa which antagonised RBD-ACE2 binding with respective IC50s of 9 and 29 nM. This good potency makes both compounds promising leads for development of future entry-based SARS-CoV-2 antivirals. The results also highlight the advantages of combining reverse pharmacology (based on medicinal plant use) with hyphenated analytical techniques to expedite identification of urgently needed antivirals.


Assuntos
Tratamento Farmacológico da COVID-19 , Plantas Medicinais , Enzima de Conversão de Angiotensina 2 , Antivirais/química , Antivirais/farmacologia , Extratos Vegetais/farmacologia , SARS-CoV-2 , África do Sul , Glicoproteína da Espícula de Coronavírus/química
10.
J Nat Prod ; 85(5): 1274-1281, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35522580

RESUMO

Five new minor sesterterpenoids, ansellones H (4), I (5), J (6), and K (7) and phorone C (8), have been isolated from a Phorbas sp. marine sponge collected in British Columbia. Their structures have been elucidated by detailed analysis of NMR and MS data. Ansellone J (6) and phorone C (8) are potent in vitro HIV-1 latency reversal agents that are more potent than the reference compound and control protein kinase C activator prostratin (3). The most potent Phorbas sesterterpenoid, ansellone J (6), was evaluated for HIV latency reversal in a primary cell context using CD4+ T cells obtained directly from four combination antiretroviral therapy-suppressed donors with HIV. To a first approximation, ansellone J (6) induced HIV latency reversal at levels similar to prostratin (3) ex vivo, but at a 10-fold lower concentration.


Assuntos
Infecções por HIV , HIV-1 , Poríferos , Animais , Colúmbia Britânica , Linfócitos T CD4-Positivos , Poríferos/química , Sesterterpenos/química , Latência Viral
11.
J Biol Chem ; 295(41): 14084-14099, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32788215

RESUMO

A sterilizing or functional cure for HIV is currently precluded by resting CD4+ T cells that harbor latent but replication-competent provirus. The "shock-and-kill" pharmacological ap-proach aims to reactivate provirus expression in the presence of antiretroviral therapy and target virus-expressing cells for elimination. However, no latency reversal agent (LRA) to date effectively clears viral reservoirs in humans, suggesting a need for new LRAs and LRA combinations. Here, we screened 216 compounds from the pan-African Natural Product Library and identified knipholone anthrone (KA) and its basic building block anthralin (dithranol) as novel LRAs that reverse viral latency at low micromolar concentrations in multiple cell lines. Neither agent's activity depends on protein kinase C; nor do they inhibit class I/II histone deacetylases. However, they are differentially modulated by oxidative stress and metal ions and induce distinct patterns of global gene expression from established LRAs. When applied in combination, both KA and anthralin synergize with LRAs representing multiple functional classes. Finally, KA induces both HIV RNA and protein in primary cells from HIV-infected donors. Taken together, we describe two novel LRAs that enhance the activities of multiple "shock-and-kill" agents, which in turn may inform ongoing LRA combination therapy efforts.


Assuntos
Antracenos/farmacologia , Antralina/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/fisiologia , Latência Viral/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Infecções por HIV/metabolismo , Infecções por HIV/patologia , Humanos , Células Jurkat
12.
Antimicrob Agents Chemother ; 65(12): e0077221, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34543092

RESUMO

Antivirals are urgently needed to combat the global SARS-CoV-2/COVID-19 pandemic, supplement existing vaccine efforts, and target emerging SARS-CoV-2 variants of concern. Small molecules that interfere with binding of the viral spike receptor binding domain (RBD) to the host angiotensin-converting enzyme II (ACE2) receptor may be effective inhibitors of SARS-CoV-2 cell entry. Here, we screened 512 pure compounds derived from natural products using a high-throughput RBD/ACE2 binding assay and identified (-)-hopeaphenol, a resveratrol tetramer, in addition to vatalbinoside A and vaticanol B, as potent and selective inhibitors of RBD/ACE2 binding and viral entry. For example, (-)-hopeaphenol disrupted RBD/ACE2 binding with a 50% inhibitory concentration (IC50) of 0.11 µM, in contrast to an IC50 of 28.3 µM against the unrelated host ligand/receptor binding pair PD-1/PD-L1 (selectivity index, 257.3). When assessed against the USA-WA1/2020 variant, (-)-hopeaphenol also inhibited entry of a VSVΔG-GFP reporter pseudovirus expressing SARS-CoV-2 spike into ACE2-expressing Vero-E6 cells and in vitro replication of infectious virus in cytopathic effect and yield reduction assays (50% effective concentrations [EC50s], 10.2 to 23.4 µM) without cytotoxicity and approaching the activities of the control antiviral remdesivir (EC50s, 1.0 to 7.3 µM). Notably, (-)-hopeaphenol also inhibited two emerging variants of concern, B.1.1.7/Alpha and B.1.351/Beta in both viral and spike-containing pseudovirus assays with similar or improved activities over the USA-WA1/2020 variant. These results identify (-)-hopeaphenol and related stilbenoid analogues as potent and selective inhibitors of viral entry across multiple SARS-CoV-2 variants of concern.


Assuntos
COVID-19 , Estilbenos , Humanos , Pandemias , Fenóis , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
13.
J Nat Prod ; 83(6): 1971-1979, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32478519

RESUMO

Chemical investigations of two specimens of the Australian crinoid Comatula rotalaria afforded five new taurine-conjugated anthraquinones, comatulins A-E (1-5), together with 11 known marine natural products (6-16). The chemical structures of all the compounds were elucidated by detailed spectroscopic and spectrometric data analysis. The first X-ray crystal structure of a crinoid-derived acyl anthraquinone, rhodocomatulin 5,7-dimethyl ether (8), is reported here. Compounds 1, 2, 6-13, and two additional naphthopyrone derivatives, 17 and 18, were evaluated for their ability to inhibit HIV-1 replication in vitro; none of the compounds were active at 100 µM. Furthermore, compounds 1, 2, 6-10, 14, 15, 17, and 18 were screened for nematocidal activity against exsheathed third-stage larvae of Hemonchus contortus, a highly pathogenic parasite nematode of ruminants. Compound 17, known as 6-methoxycomaparvin 5,8-dimethyl ether, showed an inhibitory effect on larval motility (IC50 = 30 µM) and development (IC50 = 31 µM) and induced the eviscerated (Evi) phenotype.


Assuntos
Antraquinonas/farmacologia , Equinodermos/metabolismo , Animais , Antraquinonas/química , Antinematódeos , Antivirais/química , Antivirais/farmacologia , Apoptose/efeitos dos fármacos , Austrália , HIV-1/efeitos dos fármacos , Haemonchus , Larva/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Replicação Viral/efeitos dos fármacos , Difração de Raios X
14.
Molecules ; 25(12)2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32599753

RESUMO

The increasing prevalence of drug-resistant influenza viruses emphasizes the need for new antiviral countermeasures. The M2 protein of influenza A is a proton-gated, proton-selective ion channel, which is essential for influenza replication and an established antiviral target. However, all currently circulating influenza A virus strains are now resistant to licensed M2-targeting adamantane drugs, primarily due to the widespread prevalence of an M2 variant encoding a serine to asparagine 31 mutation (S31N). To identify new chemical leads that may target M2(S31N), we performed a virtual screen of molecules from two natural product libraries and identified chebulagic acid as a candidate M2(S31N) inhibitor and influenza antiviral. Chebulagic acid selectively restores growth of M2(S31N)-expressing yeast. Molecular modeling also suggests that chebulagic acid hydrolysis fragments preferentially interact with the highly-conserved histidine residue within the pore of M2(S31N) but not adamantane-sensitive M2(S31). In contrast, chebulagic acid inhibits in vitro influenza A replication regardless of M2 sequence, suggesting that it also acts on other influenza targets. Taken together, results implicate chebulagic acid and/or its hydrolysis fragments as new chemical leads for M2(S31N) and influenza-directed antiviral development.


Assuntos
Antivirais/farmacologia , Benzopiranos/farmacologia , Avaliação Pré-Clínica de Medicamentos/métodos , Glucosídeos/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/química , Amantadina/farmacologia , Animais , Antivirais/química , Cães , Farmacorresistência Viral/efeitos dos fármacos , Farmacorresistência Viral/genética , Histidina/química , Vírus da Influenza A/fisiologia , Células Madin Darby de Rim Canino , Modelos Moleculares , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Replicação Viral/efeitos dos fármacos
15.
Mar Drugs ; 17(1)2019 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-30621172

RESUMO

Capillasterin A (1), a novel pyrano[2,3-f]chromene, together with seven known naphthopyrones including comaparvin (2), TMC-256C1 (3), 6-methoxycomaparvin-5- methyl ether (4), 5,8-dihydroxy-6-methoxy-2-propyl-4H-naphtho[2,3-b]pyran-4-one (5), 5,8-dihydroxy-6,10-dimethoxy-2-propyl-4H-naphtho[2,3-b]pyran-4-one (6), TMC-256A1 (7) and 6-methoxycomaparvin (8) were isolated from an EtOH/H2O extract from the Australian crinoid Capillaster multiradiatus. The structures of all the compounds were determined by detailed spectroscopic (1D/2D NMR and MS) data analysis. This is the first report of a natural product that contains the pyrano[2,3-f]chromene skeleton. Compounds 2⁻6 were observed to display moderate inhibition of in vitro HIV-1 replication in a T cell line with EC50 values ranging from 7.5 to 25.5 µM without concomitant cytotoxicity.


Assuntos
Equinodermos/química , Piranos/química , Animais , Austrália , Benzopiranos/química , Cromonas/química , Naftalenos/química , Pironas/química , Relação Estrutura-Atividade
16.
Arterioscler Thromb Vasc Biol ; 37(11): 2147-2155, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28882873

RESUMO

OBJECTIVE: High-density lipoproteins (HDL) are considered to protect against atherosclerosis in part by facilitating the removal of cholesterol from peripheral tissues. However, factors regulating lipid efflux are incompletely understood. We previously identified a variant in adenosine triphosphate-binding cassette transporter A8 (ABCA8) in an individual with low HDL cholesterol (HDLc). Here, we investigate the role of ABCA8 in cholesterol efflux and in regulating HDLc levels. APPROACH AND RESULTS: We sequenced ABCA8 in individuals with low and high HDLc and identified, exclusively in low HDLc probands, 3 predicted deleterious heterozygous ABCA8 mutations (p.Pro609Arg [P609R], IVS17-2 A>G and p.Thr741Stop [T741X]). HDLc levels were lower in heterozygous mutation carriers compared with first-degree family controls (0.86±0.34 versus 1.17±0.26 mmol/L; P=0.005). HDLc levels were significantly decreased by 29% (P=0.01) in Abca8b-/- mice on a high-cholesterol diet compared with wild-type mice, whereas hepatic overexpression of human ABCA8 in mice resulted in significant increases in plasma HDLc and the first steps of macrophage-to-feces reverse cholesterol transport. Overexpression of wild-type but not mutant ABCA8 resulted in a significant increase (1.8-fold; P=0.01) of cholesterol efflux to apolipoprotein AI in vitro. ABCA8 colocalizes and interacts with adenosine triphosphate-binding cassette transporter A1 and further potentiates adenosine triphosphate-binding cassette transporter A1-mediated cholesterol efflux. CONCLUSIONS: ABCA8 facilitates cholesterol efflux and modulates HDLc levels in humans and mice.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol na Dieta/sangue , HDL-Colesterol/sangue , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Adulto , Idoso , Animais , Apolipoproteína A-I/sangue , Apolipoproteína B-100/sangue , Transporte Biológico , Biomarcadores/sangue , Células COS , Estudos de Casos e Controles , Chlorocebus aethiops , Análise Mutacional de DNA , Dieta Hiperlipídica , Fezes/química , Feminino , Células HEK293 , Hereditariedade , Heterozigoto , Humanos , Fígado/metabolismo , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Mutação , Linhagem , Fenótipo , Transfecção
17.
J Virol ; 90(20): 9495-508, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27512074

RESUMO

UNLABELLED: The emergence of transmissible HIV-1 strains with resistance to antiretroviral drugs highlights a continual need for new therapies. Here we describe a novel acylguanidine-containing compound, 1-(2-(azepan-1-yl)nicotinoyl)guanidine (or SM111), that inhibits in vitro replication of HIV-1, including strains resistant to licensed protease, reverse transcriptase, and integrase inhibitors, without major cellular toxicity. At inhibitory concentrations, intracellular p24(Gag) production was unaffected, but virion release (measured as extracellular p24(Gag)) was reduced and virion infectivity was substantially impaired, suggesting that SM111 acts at a late stage of viral replication. SM111-mediated inhibition of HIV-1 was partially overcome by a Vpu I17R mutation alone or a Vpu W22* truncation in combination with Env N136Y. These mutations enhanced virion infectivity and Env expression on the surface of infected cells in the absence and presence of SM111 but also impaired Vpu's ability to downregulate CD4 and BST2/tetherin. Taken together, our results support acylguanidines as a class of HIV-1 inhibitors with a distinct mechanism of action compared to that of licensed antiretrovirals. Further research on SM111 and similar compounds may help to elucidate knowledge gaps related to Vpu's role in promoting viral egress and infectivity. IMPORTANCE: New inhibitors of HIV-1 replication may be useful as therapeutics to counteract drug resistance and as reagents to perform more detailed studies of viral pathogenesis. SM111 is a small molecule that blocks the replication of wild-type and drug-resistant HIV-1 strains by impairing viral release and substantially reducing virion infectivity, most likely through its ability to prevent Env expression at the infected cell surface. Partial resistance to SM111 is mediated by mutations in Vpu and/or Env, suggesting that the compound affects host/viral protein interactions that are important during viral egress. Further characterization of SM111 and similar compounds may allow more detailed pharmacological studies of HIV-1 egress and provide opportunities to develop new treatments for HIV-1.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/tratamento farmacológico , HIV-1/efeitos dos fármacos , Antígenos CD/genética , Antígenos CD4/genética , Linhagem Celular , Proteínas Ligadas por GPI/genética , Humanos , Mutação/efeitos dos fármacos , Vírion/efeitos dos fármacos , Liberação de Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene env do Vírus da Imunodeficiência Humana/genética
18.
Mol Pharmacol ; 90(2): 80-95, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27193582

RESUMO

The increasing prevalence of influenza viruses with resistance to approved antivirals highlights the need for new anti-influenza therapeutics. Here we describe the functional properties of hexamethylene amiloride (HMA)-derived compounds that inhibit the wild-type and adamantane-resistant forms of the influenza A M2 ion channel. For example, 6-(azepan-1-yl)-N-carbamimidoylnicotinamide ( 9: ) inhibits amantadine-sensitive M2 currents with 3- to 6-fold greater potency than amantadine or HMA (IC50 = 0.2 vs. 0.6 and 1.3 µM, respectively). Compound 9: competes with amantadine for M2 inhibition, and molecular docking simulations suggest that 9: binds at site(s) that overlap with amantadine binding. In addition, tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 27: ) acts both on adamantane-sensitive and a resistant M2 variant encoding a serine to asparagine 31 mutation (S31N) with improved efficacy over amantadine and HMA (IC50 = 0.6 µM and 4.4 µM, respectively). Whereas 9: inhibited in vitro replication of influenza virus encoding wild-type M2 (EC50 = 2.3 µM), both 27: and tert-butyl 4'-(carbamimidoylcarbamoyl)-2',3-dinitro-[1,1'-biphenyl]-4-carboxylate ( 26: ) preferentially inhibited viruses encoding M2(S31N) (respective EC50 = 18.0 and 1.5 µM). This finding indicates that HMA derivatives can be designed to inhibit viruses with resistance to amantadine. Our study highlights the potential of HMA derivatives as inhibitors of drug-resistant influenza M2 ion channels.


Assuntos
Amilorida/análogos & derivados , Antivirais/farmacologia , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/metabolismo , Proteínas da Matriz Viral/antagonistas & inibidores , Amantadina/farmacologia , Amilorida/síntese química , Amilorida/química , Amilorida/farmacologia , Animais , Antivirais/química , Morte Celular/efeitos dos fármacos , Linhagem Celular , Guanidinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Vírus da Influenza A Subtipo H9N2/efeitos dos fármacos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Técnicas de Patch-Clamp , Proteínas da Matriz Viral/metabolismo
19.
J Org Chem ; 81(22): 11324-11334, 2016 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-27768313

RESUMO

Eight new sesterterpenoids, alotaketals D (8) and E (9), ansellones D (10), E (11), F (12), and G (13), and anvilones A (14) and B (15), have been isolated from extracts of the marine sponge Phorbas sp. collected in Howe Sound British Columbia, and their structures have been elucidated by analysis of NMR and MS data. Ansellone F (12) contains a rare 1,2-3,4-bis-epoxydecalin substructure. Anvilones A (14) and B (15) have an unprecedented tetracylic anvilane terpenoid carbon skeleton. Using a cell culture model of latent HIV-1 infection, ansellone A (3), alotaketal D (8), and anvilone A (14) were found to induce HIV proviral gene expression similar to the control compound prostratin (1), while the known sesterterpenoid alotaketal C (2), isolated from the same extract, was more potent and gave a stronger response than prostratin (1). Like prostratin (1), all of the Phorbas sesterterpenoids with latency reversal agent properties appear to activate protein kinase C signaling.


Assuntos
HIV-1/efeitos dos fármacos , Poríferos/química , Provírus/efeitos dos fármacos , Sesterterpenos/isolamento & purificação , Ativação Viral/efeitos dos fármacos , Latência Viral , Animais , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , HIV-1/fisiologia , Humanos , Espectroscopia de Ressonância Magnética/métodos , Estrutura Molecular , Provírus/fisiologia , Sesterterpenos/química , Sesterterpenos/farmacologia , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Ultravioleta
20.
J Lipid Res ; 55(8): 1693-701, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24891332

RESUMO

While genetic determinants strongly influence HDL cholesterol (HDLc) levels, most genetic causes underlying variation in HDLc remain unknown. We aimed to identify novel rare mutations with large effects in candidate genes contributing to extreme HDLc in humans, utilizing family-based Mendelian genetics. We performed next-generation sequencing of 456 candidate HDLc-regulating genes in 200 unrelated probands with extremely low (≤10th percentile) or high (≥90th percentile) HDLc. Probands were excluded if known mutations existed in the established HDLc-regulating genes ABCA1, APOA1, LCAT, cholesteryl ester transfer protein (CETP), endothelial lipase (LIPG), and UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 2 (GALNT2). We identified 93 novel coding or splice-site variants in 72 candidate genes. Each variant was genotyped in the proband's family. Family-based association analyses were performed for variants with sufficient power to detect significance at P < 0.05 with a total of 627 family members being assessed. Mutations in the genes glucokinase regulatory protein (GCKR), RNase L (RNASEL), leukocyte immunoglobulin-like receptor 3 (LILRA3), and dynein axonemal heavy chain 10 (DNAH10) segregated with elevated HDLc levels in families, while no mutations associated with low HDLc. Taken together, we have identified mutations in four novel genes that may play a role in regulating HDLc levels in humans.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Dineínas do Axonema/genética , HDL-Colesterol/sangue , Endorribonucleases/genética , Mutação , Receptores Imunológicos/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Adulto , Idoso , Apolipoproteína A-I/genética , Proteínas de Transferência de Ésteres de Colesterol/genética , HDL-Colesterol/genética , Feminino , Humanos , Lipase/genética , Masculino , Pessoa de Meia-Idade , N-Acetilgalactosaminiltransferases/genética , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Polipeptídeo N-Acetilgalactosaminiltransferase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA