Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Cell Mol Biol ; 70(6): 493-506, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38386777

RESUMO

Lung inflammation, caused by acute exposure to ozone (O3), one of the six criteria air pollutants, is a significant source of morbidity in susceptible individuals. Alveolar macrophages (AMØs) are the most abundant immune cells in the normal lung, and their number increases after O3 exposure. However, the role of AMØs in promoting or limiting O3-induced lung inflammation has not been clearly defined. In this study, we used a mouse model of acute O3 exposure, lineage tracing, genetic knockouts, and data from O3-exposed human volunteers to define the role and ontogeny of AMØs during acute O3 exposure. Lineage-tracing experiments showed that 12, 24, and 72 hours after exposure to O3 (2 ppm) for 3 hours, all AMØs were of tissue-resident origin. Similarly, in humans exposed to filtered air and O3 (200 ppb) for 135 minutes, we did not observe at ∼21 hours postexposure an increase in monocyte-derived AMØs by flow cytometry. Highlighting a role for tissue-resident AMØs, we demonstrate that depletion of tissue-resident AMØs with clodronate-loaded liposomes led to persistence of neutrophils in the alveolar space after O3 exposure, suggesting that impaired neutrophil clearance (i.e., efferocytosis) leads to prolonged lung inflammation. Moreover, depletion of tissue-resident AMØs demonstrated reduced clearance of intratracheally instilled apoptotic Jurkat cells, consistent with reduced efferocytosis. Genetic ablation of MerTK (MER proto-oncogene, tyrosine kinase), a key receptor involved in efferocytosis, also resulted in impaired clearance of apoptotic neutrophils after O3 exposure. Overall, these findings underscore the pivotal role of tissue-resident AMØs in resolving O3-induced inflammation via MerTK-mediated efferocytosis.


Assuntos
Macrófagos Alveolares , Ozônio , Fagocitose , Proto-Oncogene Mas , c-Mer Tirosina Quinase , Ozônio/farmacologia , c-Mer Tirosina Quinase/metabolismo , c-Mer Tirosina Quinase/genética , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/efeitos dos fármacos , Humanos , Fagocitose/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/patologia , Camundongos Knockout , Masculino , Inflamação/metabolismo , Inflamação/patologia , Inflamação/induzido quimicamente , Apoptose/efeitos dos fármacos , Pulmão/patologia , Pulmão/metabolismo , Pulmão/efeitos dos fármacos , Eferocitose
2.
FASEB J ; 37(8): e23100, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37462673

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a cytokine that stimulates the proliferation and differentiation of granulocyte and macrophage precursors. The mouse gene-encoding GM-CSF, Csf2, is regulated at both transcriptional and post-transcriptional levels. An adenine-uridine-rich element (ARE) within the 3'-untranslated region of Csf2 mRNA was shown in cell transfection studies to confer instability on this transcript. To explore the physiological importance of this element in an intact animal, we generated mice with a knock-in deletion of the 75-nucleotide ARE. Mice heterozygous for this ARE deletion developed severe respiratory distress and death within about 12 weeks of age. There was dense infiltration of lung alveolar spaces by crystal-containing macrophages. Increased stability of Csf2 mRNA was confirmed in bone marrow-derived macrophages, and elevated GM-CSF levels were observed in serum and lung. These mice did not exhibit notable abnormalities in blood or bone marrow, and transplantation of bone marrow from mutant mice into lethally irradiated WT mice did not confer the pulmonary phenotype. Mice with a conditional deletion of the ARE restricted to lung type II alveolar cells exhibited an essentially identical lethal lung phenotype at the same ages as the mice with the whole-body deletion. In contrast, mice with the same conditional ARE deletion in myeloid cells, including macrophages, exhibited lesser degrees of macrophage infiltration into alveolar spaces much later in life, at approximately 9 months of age. Post-transcriptional Csf2 mRNA stability regulation in pulmonary alveolar epithelial cells appears to be essential for normal physiological GM-CSF secretion and pulmonary macrophage homeostasis.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos , Pneumonia , Animais , Camundongos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/genética , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Pulmão/metabolismo , Macrófagos Alveolares/metabolismo , Pneumonia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
3.
Risk Anal ; 44(2): 493-507, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37244748

RESUMO

In the coronavirus disease 2019 era, biocidal products are increasingly used for controlling harmful organisms, including microorganisms. However, assuring safety against adverse health effects is a critical issue from a public health standpoint. This study aimed to provide an overview of key aspects of risk assessment, management, and communication that ensure the safety of biocidal active ingredients and products. The inherent characteristics of biocidal products make them effective against pests and pathogens; however, they also possess potential toxicities. Therefore, public awareness regarding both the beneficial and potential adverse effects of biocidal products needs to be increased. Biocidal active ingredients and products are regulated under specific laws: the Federal Insecticide, Fungicide, and Rodenticide Act for the United States; the European Union (EU) Biocidal Products Regulation for the EU; and the Consumer Chemical Products and Biocide Safety Management Act for the Republic of Korea. Risk management also needs to consider the evidence of enhanced sensitivity to toxicities in individuals with chronic diseases, given the increased prevalence of these conditions in the population. This is particularly important for post-marketing safety assessments of biocidal products. Risk communication conveys information, including potential risks and risk-reduction measures, aimed at managing or controlling health or environmental risks. Taken together, the collaborative effort of stakeholders in risk assessment, management, and communication strategies is critical to ensuring the safety of biocidal products sold in the market as these strategies are constantly evolving.


Assuntos
Desinfetantes , Humanos , Estados Unidos , Medição de Risco , Desinfetantes/toxicidade , União Europeia , Gestão de Riscos , Comunicação
4.
Cancer Immunol Immunother ; 72(12): 4195-4207, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37848682

RESUMO

T cells expressing a mesothelin (MSLN)-specific T cell receptor fusion construct (TRuC®), called TC-210, have demonstrated robust antitumor activity in preclinical models of mesothelioma, ovarian cancer, and lung cancer. However, they are susceptible to suppression by the programmed cell death protein 1 (PD-1)/programmed cell death protein ligand 1 (PD-L1) axis and lack intrinsic costimulatory signaling elements. To enhance the function of anti-MSLN TRuC-T cells, chimeric switch receptors (CSRs) have been designed to co-opt the immunosuppressive PD-1/PD-L1 axis and to deliver a CD28-mediated costimulatory signal. Here, we report that coexpression of the PD1-CD28 CSR in TRuC-T cells enhanced T cell receptor signaling, increased proinflammatory effector cytokines, decreased anti-inflammatory cytokines, and sustained effector function in the presence of PD-L1 when compared with TC-210. Anti-MSLN TRuC-T cells engineered to coexpress PD1-CD28 CSRs comprising the ectodomain of PD-1 and the intracellular domain of CD28 linked by the transmembrane domain of PD-1 were selected for integration into an anti-MSLN TRuC-T cell therapy product called TC-510. In vitro, TC-510 showed significant improvements in persistence and resistance to exhaustion upon chronic stimulation by tumor cells expressing MSLN and PD-L1 when compared with TC-210. In vivo, TC-510 showed a superior ability to provide durable protection following tumor rechallenge, versus TC-210. These data demonstrate that integration of a PD1-CD28 CSR into TRuC-T cells improves effector function, resistance to exhaustion, and prolongs persistence. Based on these findings, TC-510 is currently being evaluated in patients with MSLN-expressing solid tumors.


Assuntos
Antígenos CD28 , Mesotelioma , Humanos , Mesotelina , Receptor de Morte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfócitos T/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Citocinas/metabolismo
5.
Toxicol Appl Pharmacol ; 462: 116381, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36681128

RESUMO

Damage associated molecular patterns (DAMPs) are molecules released from dead/dying cells following toxicant and/or environmental exposures that activate the immune response through binding of pattern recognition receptors (PRRs). Excessive production of DAMPs or failed clearance leads to chronic inflammation and delayed inflammation resolution. One category of DAMPs are oxidized phospholipids (oxPLs) produced upon exposure to high levels of oxidative stress, such as following ozone (O3) induced inflammation. OxPLs are bound by multiple classes of PRRs that include scavenger receptors (SRs) such as SR class B-1 (SR-BI) and toll-like receptors (TLRs). Interactions between oxPLs and PRRs appear to regulate inflammation; however, the role of SR-BI in oxPL-induced lung inflammation has not been defined. Therefore, we hypothesize that SR-BI is critical in protecting the lung from oxPL-induced pulmonary inflammation/injury. To test this hypothesis, C57BL/6J (WT) female mice were dosed with oxidized 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphatidylcholine (oxPAPC) by oropharyngeal aspiration which increased pulmonary SR-BI expression. Following oxPAPC exposure, SR-BI deficient (SR-BI-/-) mice exhibited increased lung pathology and inflammatory cytokine/chemokine production. Lipidomic analysis revealed that SR-BI-/- mice had an altered pulmonary lipidome prior to and following oxPAPC exposure, which correlated with increased oxidized phosphatidylcholines (PCs). Finally, we characterized TLR4-mediated activation of NF-κB following oxPAPC exposure and discovered that SR-BI-/- mice had increased TLR4 mRNA expression in lung tissue and macrophages, increased nuclear p65, and decreased cytoplasmic IκBα. Overall, we conclude that SR-BI is required for limiting oxPAPC-induced lung pathology by maintaining lipid homeostasis, reducing oxidized PCs, and attenuating TLR4-NF-κB activation, thereby preventing excessive and persistent inflammation.


Assuntos
Fosfolipídeos , Pneumonia , Animais , Feminino , Camundongos , Proteínas de Transporte , Inflamação/induzido quimicamente , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Pneumonia/induzido quimicamente , Pneumonia/prevenção & controle , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Receptor 4 Toll-Like/metabolismo
6.
Part Fibre Toxicol ; 20(1): 15, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37085867

RESUMO

BACKGROUND: Microbial dysbiosis is a potential mediator of air pollution-induced adverse outcomes. However, a systemic comparison of the lung and gut microbiome alterations and lung-gut axis following air pollution exposure is scant. In this study, we exposed male C57BL/6J mice to inhaled air, CB (10 mg/m3), O3 (2 ppm) or CB + O3 mixture for 3 h/day for either one day or four consecutive days and were euthanized 24 h post last exposure. The lung and gut microbiome were quantified by 16 s sequencing. RESULTS: Multiple CB + O3 exposures induced an increase in the lung inflammatory cells (neutrophils, eosinophils and B lymphocytes), reduced absolute bacterial load in the lungs and increased load in the gut. CB + O3 exposure was more potent as it decreased lung microbiome alpha diversity just after a single exposure. CB + O3 co-exposure uniquely increased Clostridiaceae and Prevotellaceae in the lungs. Serum short chain fatty acids (SCFA) (acetate and propionate) were increased significantly only after CB + O3 co-exposure. A significant increase in SCFA producing bacterial families (Ruminococcaceae, Lachnospiraceae, and Eubacterium) were also observed in the gut after multiple exposures. Co-exposure induced significant alterations in the gut derived metabolite receptors/mediator (Gcg, Glp-1r, Cck) mRNA expression. Oxidative stress related mRNA expression in lungs, and oxidant levels in the BALF, serum and gut significantly increased after CB + O3 exposures. CONCLUSION: Our study confirms distinct gut and lung microbiome alterations after CB + O3 inhalation co-exposure and indicate a potential homeostatic shift in the gut microbiome to counter deleterious impacts of environmental exposures on metabolic system.


Assuntos
Microbiota , Ozônio , Camundongos , Animais , Masculino , Ozônio/toxicidade , Fuligem/toxicidade , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , RNA Mensageiro/metabolismo
7.
Part Fibre Toxicol ; 20(1): 11, 2023 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-37069680

RESUMO

BACKGROUND: Interactions between air pollution and infectious agents are increasingly recognized and critical to identify, especially to protect vulnerable populations. Pregnancy represents a vulnerable period for influenza infection and air pollution exposure, yet interactions during pregnancy remain unclear. Maternal exposure to ultrafine particles (UFPs, [Formula: see text] 100 nm diameter), a class of particulate matter ubiquitous in urban environments, elicits unique pulmonary immune responses. We hypothesized that UFP exposure during pregnancy would lead to aberrant immune responses to influenza enhancing infection severity. RESULTS: Building from our well-characterized C57Bl/6N mouse model employing daily gestational UFP exposure from gestational day (GD) 0.5-13.5, we carried out a pilot study wherein pregnant dams were subsequently infected with Influenza A/Puerto Rico/8/1934 (PR8) on GD14.5. Findings indicate that PR8 infection caused decreased weight gain in filtered air (FA) and UFP-exposed groups. Co-exposure to UFPs and viral infection led to pronounced elevation in PR8 viral titer and reduced pulmonary inflammation, signifying potential suppression of innate and adaptive immune defenses. Pulmonary expression of the pro-viral factor sphingosine kinase 1 (Sphk1) and pro-inflammatory cytokine interleukin-1ß (IL-1 [Formula: see text]) was significantly increased in pregnant mice exposed to UFPs and infected with PR8; expression correlated with higher viral titer. CONCLUSIONS: Results from our model provide initial insight into how maternal UFP exposure during pregnancy enhances respiratory viral infection risk. This model is an important first step in establishing future regulatory and clinical strategies for protecting pregnant women exposed to UFPs.


Assuntos
Poluentes Atmosféricos , Influenza Humana , Feminino , Humanos , Animais , Camundongos , Gravidez , Material Particulado/toxicidade , Exposição Materna/efeitos adversos , Projetos Piloto , Pulmão , Poluentes Atmosféricos/toxicidade , Poluentes Atmosféricos/análise , Tamanho da Partícula
8.
Respir Res ; 23(1): 131, 2022 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610699

RESUMO

BACKGROUND: Asthma patients with comorbid obesity exhibit increased disease severity, in part, due to airway remodeling, which is also observed in mouse models of asthma and obesity. A mediator of remodeling that is increased in obesity is leptin. We hypothesized that in a mouse model of allergic airways disease, mice receiving exogenous leptin would display increased airway inflammation and fibrosis. METHODS: Five-week-old male and female C57BL/6J mice were challenged with intranasal house dust mite (HDM) allergen or saline 5 days per week for 6 weeks (n = 6-9 per sex, per group). Following each HDM exposure, mice received subcutaneous recombinant human leptin or saline. At 48 h after the final HDM challenge, lung mechanics were evaluated and the mice were sacrificed. Bronchoalveolar lavage was performed and differential cell counts were determined. Lung tissue was stained with Masson's trichrome, periodic acid-Schiff, and hematoxylin and eosin stains. Mouse lung fibroblasts were cultured, and whole lung mRNA was isolated. RESULTS: Leptin did not affect mouse body weight, but HDM+leptin increased baseline blood glucose. In mixed-sex groups, leptin increased mouse lung fibroblast invasiveness and increased lung Col1a1 mRNA expression. Total lung resistance and tissue damping were increased with HDM+leptin treatment, but not leptin or HDM alone. Female mice exhibited enhanced airway responsiveness to methacholine with HDM+leptin treatment, while leptin alone decreased total respiratory system resistance in male mice. CONCLUSIONS: In HDM-induced allergic airways disease, administration of exogenous leptin to mice enhanced lung resistance and increased markers of fibrosis, with differing effects between males and females.


Assuntos
Asma , Hipersensibilidade , Doença Pulmonar Obstrutiva Crônica , Fibrose Pulmonar , Alérgenos , Animais , Asma/metabolismo , Biomarcadores/metabolismo , Líquido da Lavagem Broncoalveolar , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Hipersensibilidade/metabolismo , Leptina , Pulmão/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fibrose Pulmonar/metabolismo , Pyroglyphidae , RNA Mensageiro/metabolismo
9.
Am J Respir Cell Mol Biol ; 64(6): 698-708, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33647226

RESUMO

Asthma is a common respiratory disease currently affecting more than 300 million worldwide and is characterized by airway inflammation, hyperreactivity, and remodeling. It is a heterogeneous disease consisting of corticosteroid-sensitive T-helper cell type 2-driven eosinophilic and corticosteroid-resistant, T-helper cell type 17-driven neutrophilic phenotypes. One pathway recently described to regulate asthma pathogenesis is cholesterol trafficking. Scavenger receptors, in particular SR-BI (scavenger receptor class B type I), are known to direct cellular cholesterol uptake and efflux. We recently defined SR-BI functions in pulmonary host defense; however, the function of SR-BI in asthma pathogenesis is unknown. To elucidate the role of SR-BI in allergic asthma, SR-BI-sufficient (SR-BI+/+) and SR-BI-deficient (SR-BI-/-) mice were sensitized (Days 0 and 7) and then challenged (Days 14, 15, and 16) with a house dust mite (HDM) preparation administered through oropharyngeal aspiration. Airway inflammation and cytokine production were quantified on Day 17. When compared with SR-BI+/+ mice, the HDM-challenged SR-BI-/- mice had increased neutrophils and pulmonary IL-17A production in BAL fluid. This augmented IL-17A production in SR-BI-/- mice originated from a non-T-cell source that included neutrophils and alveolar macrophages. Given that SR-BI regulates adrenal steroid hormone production, we tested whether the changes in SR-BI-/- mice were glucocorticoid dependent. Indeed, SR-BI-/- mice were adrenally insufficient during the HDM challenge, and corticosterone replacement decreased pulmonary neutrophilia and IL-17A production in SR-BI-/- mice. Taken together, these data indicate that SR-BI dampens pulmonary neutrophilic inflammation and IL-17A production in allergic asthma at least in part by maintaining adrenal function.


Assuntos
Asma/metabolismo , Asma/patologia , Antígenos CD36/metabolismo , Inflamação/patologia , Interleucina-17/metabolismo , Neutrófilos/patologia , Insuficiência Adrenal/complicações , Insuficiência Adrenal/imunologia , Animais , Asma/imunologia , Asma/parasitologia , Antígenos CD36/deficiência , Hipersensibilidade/complicações , Pulmão/parasitologia , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Ovalbumina/imunologia , Pyroglyphidae/fisiologia , Células Th17/imunologia
10.
Radiology ; 301(1): 211-220, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34313473

RESUMO

Background Recent studies demonstrate that antifibrotic drugs previously reserved for idiopathic pulmonary fibrosis (IPF) may slow progression in other interstitial lung diseases (ILDs), creating an urgent need for tools that can sensitively assess disease activity, progression, and therapy response across ILDs. Hyperpolarized xenon 129 (129Xe) MRI and spectroscopy have provided noninvasive measurements of regional gas-exchange abnormalities in IPF. Purpose To assess gas exchange function using 129Xe MRI in a group of study participants with nonspecific interstitial pneumonia (NSIP) compared with healthy control participants. Materials and Methods In this prospective study, participants with NSIP and healthy control participants were enrolled between November 2017 and February 2020 and underwent 129Xe MRI and spectroscopy. Quantitative imaging provided three-dimensional maps of ventilation, interstitial barrier uptake, and transfer into the red blood cell (RBC) compartment. Spectroscopy provided parameters of the static RBC and barrier uptake compartments, as well as cardiogenic oscillations in RBC signal amplitude and chemical shift. Differences between NSIP and healthy control participants were assessed using the Wilcoxon rank-sum test. Results Thirty-six participants with NSIP (mean age, 57 years ± 11 [standard deviation]; 27 women) and 15 healthy control participants (mean age, 39 years ± 18; two women) were evaluated. Participants with NSIP had no difference in ventilation compared with healthy control participants (median, 4.4% [first quartile, 1.5%; third quartile, 8.7%] vs 6.0% [first quartile, 2.8%; third quartile, 6.9%]; P = .91), but they had a higher barrier uptake (median, 6.2% [first quartile, 1.8%; third quartile, 23.9%] vs 0.53% [first quartile, 0.33%; third quartile, 2.9%]; P = .003) and an increased RBC transfer defect (median, 20.6% [first quartile, 11.6%; third quartile, 27.8%] vs 2.8% [first quartile, 2.3%; third quartile, 4.9%]; P < .001). NSIP participants also had a reduced ratio of RBC-to-barrier peaks (median, 0.24 [first quartile, 0.19; third quartile, 0.31] vs 0.57 [first quartile, 0.52; third quartile, 0.67]; P < .001) and a reduced RBC chemical shift (median, 217.5 ppm [first quartile, 217.0 ppm; third quartile, 218.0 ppm] vs 218.2 ppm [first quartile, 217.9 ppm; third quartile, 218.6 ppm]; P = .001). Conclusion Participants with nonspecific interstitial pneumonia had increased barrier uptake and decreased red blood cell (RBC) transfer compared with healthy controls measured using xenon 129 gas-exchange MRI and reduced RBC-to-barrier ratio and RBC chemical shift measured using spectroscopy. © RSNA, 2021 Online supplemental material is available for this article. See also the editorial by Wild in this issue.


Assuntos
Doenças Pulmonares Intersticiais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Troca Gasosa Pulmonar , Isótopos de Xenônio , Adulto , Estudos Transversais , Feminino , Humanos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Análise Espectral/métodos
11.
Toxicol Appl Pharmacol ; 426: 115645, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34271066

RESUMO

Elevated ambient temperatures and extreme weather events have increased the incidence of wildfires world-wide resulting in increased wood smoke particle (WSP). Epidemiologic data suggests that WSP exposure associates with exacerbations of respiratory diseases, and with increased respiratory viral infections. To assess the impact of WSP exposure on host response to viral pneumonia, we performed WSP exposures in rodents followed by infection with mouse adapted influenza (HINI-PR8). C57BL/6 male mice aged 6-8 weeks were challenged with WSP or PBS by oropharyngeal aspiration in acute (single dose) or sub-acute exposures (day 1, 3, 5, 7 and 10). Additional groups underwent sub-acute exposure followed by infection by influenza or heat-inactivated (HI) virus. Following exposures/infection, bronchoalveolar lavage (BAL) was performed to assess for total cell counts/differentials, total protein, protein carbonyls and hyaluronan. Lung tissue was assessed for viral counts by real time PCR. When compared to PBS, acute WSP exposure associated with an increase in airspace macrophages. Alternatively, sub-acute exposure resulted in a dose dependent increase in airspace neutrophils. Sub-acute WSP exposure followed by influenza infection was associated with improved respiratory viral outcomes including reduced weight loss and increased blood oxygen saturation, and decreased protein carbonyls and viral titers. Flow cytometry demonstrated dynamic changes in pulmonary macrophage and T cell subsets based on challenge with WSP and influenza. This data suggests that sub-acute WSP exposure can improve host response to acute influenza infection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , Pneumonia Viral , Fumaça , Incêndios Florestais , Administração por Inalação , Animais , Vírus da Influenza A Subtipo H1N1/fisiologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/virologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Infecções por Orthomyxoviridae/virologia , Pneumonia Viral/imunologia , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Índice de Gravidade de Doença , Transcriptoma , Replicação Viral , Madeira
12.
Curr Allergy Asthma Rep ; 21(5): 34, 2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33970346

RESUMO

The lung mucosa functions as a principal barrier between the body and inhaled environmental irritants and pathogens. Precise and targeted surveillance mechanisms are required at this lung-environment interface to maintain homeostasis and preserve gas exchange. This is performed by the innate immune system, a germline-encoded system that regulates initial responses to foreign irritants and pathogens. Environmental pollutants, such as particulate matter (PM), ozone (O3), and other products of combustion (NO2, SO3, etc.), both stimulate and disrupt the function of the innate immune system of the lung, leading to the potential for pathologic consequences. PURPOSE OF REVIEW: The purpose of this review is to explore recent discoveries and investigations into the role of the innate immune system in responding to environmental exposures. This focuses on mechanisms by which the normal function of the innate immune system is modified by environmental agents leading to disruptions in respiratory function. RECENT FINDINGS: This is a narrative review of mechanisms of pulmonary innate immunity and the impact of environmental exposures on these responses. Recent findings highlighted in this review are categorized by specific components of innate immunity including epithelial function, macrophages, pattern recognition receptors, and the microbiome. Overall, the review supports broad impacts of environmental exposures to alterations to normal innate immune functions and has important implications for incidence and exacerbations of lung disease. The innate immune system plays a critical role in maintaining pulmonary homeostasis in response to inhaled air pollutants. As many of these agents are unable to be mitigated, understanding their mechanistic impact is critical to develop future interventions to limit their pathologic consequences.


Assuntos
Poluentes Atmosféricos , Imunidade Inata/imunologia , Pneumopatias , Mucosa Respiratória/imunologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/imunologia , Humanos , Pulmão/imunologia , Pulmão/fisiopatologia , Pneumopatias/etiologia , Pneumopatias/imunologia , Pneumopatias/fisiopatologia , Ozônio/efeitos adversos , Ozônio/imunologia , Material Particulado/efeitos adversos , Material Particulado/imunologia , Mucosa Respiratória/fisiopatologia
13.
Am J Pathol ; 189(5): 1029-1040, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30898588

RESUMO

Radiation-induced pulmonary fibrosis (RTPF) is a progressive, serious condition in many subjects treated for thoracic malignancies or after accidental nuclear exposure. No biomarker exists for identifying the irradiated subjects most susceptible to pulmonary fibrosis (PF). Previously, we determined that gastrin-releasing peptide (GRP) was elevated within days after birth in newborns exposed to hyperoxia who later developed chronic lung disease. The goal of the current study was to test whether radiation (RT) exposure triggers GRP release in mice and whether this contributes to RTPF in vivo. We determined urine GRP levels and lung GRP immunostaining in mice 0 to 24 after post-thoracic RT (15 Gy). Urine GRP levels were significantly elevated between 24 hours post-RT; GRP-blocking monoclonal antibody 2A11, given minutes post-RT, abrogated urine GRP levels by 6 to 12 hours and also altered phosphoprotein signaling pathways at 24 hours post-RT. Strong extracellular GRP immunostaining was observed in lung at 6 hours post-RT. Mice given one dose of GRP monoclonal antibody 2A11 24 hours post-RT had significantly reduced myofibroblast accumulation and collagen deposition 15 weeks later, indicating protection against lung fibrosis. Therefore, elevation of urine GRP could be predictive of RTPF development. In addition, transient GRP blockade could mitigate PF in normal lung after therapeutic or accidental RT exposure.


Assuntos
Raios gama/efeitos adversos , Peptídeo Liberador de Gastrina/metabolismo , Fosfoproteínas/metabolismo , Fibrose Pulmonar/etiologia , Lesões por Radiação/etiologia , Animais , Feminino , Camundongos , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia
14.
Am J Respir Cell Mol Biol ; 61(2): 150-161, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31368812

RESUMO

Defining responses of the structural and immune cells in biologic systems is critically important to understanding disease states and responses to injury. This requires accurate and sensitive methods to define cell types in organ systems. The principal method to delineate the cell populations involved in these processes is flow cytometry. Although researchers increasingly use flow cytometry, technical challenges can affect its accuracy and reproducibility, thus significantly limiting scientific advancements. This challenge is particularly critical to lung immunology, as the lung is readily accessible and therefore used in preclinical and clinical studies to define potential therapeutics. Given the importance of flow cytometry in pulmonary research, the American Thoracic Society convened a working group to highlight issues and technical challenges to the performance of high-quality pulmonary flow cytometry, with a goal of improving its quality and reproducibility.


Assuntos
Citometria de Fluxo/métodos , Citometria de Fluxo/normas , Pneumopatias/diagnóstico , Pneumopatias/genética , Pulmão/citologia , Animais , Apoptose , Separação Celular , Congressos como Assunto , Humanos , Pulmão/imunologia , Pulmão/patologia , Células Mieloides/citologia , Fenótipo , Guias de Prática Clínica como Assunto , Reprodutibilidade dos Testes , Sociedades Médicas , Estados Unidos
15.
Ann Pharmacother ; 53(12): 1238-1248, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31280590

RESUMO

Objective: Provide information for pharmacists on idiopathic pulmonary fibrosis (IPF) and its treatment. Study Selection and Data Extraction: All articles with data from randomized controlled trials of nintedanib or pirfenidone were reviewed. Data Synthesis: IPF is a progressive and ultimately fatal interstitial lung disease characterized by decline in lung function and worsening dyspnea. It is uncommon and mainly occurs in individuals aged >60 years, particularly men with a history of smoking. Nintedanib and pirfenidone were approved in the United States for the treatment of IPF in 2014 and received conditional recommendations in the 2015 American Thoracic Society/European Respiratory Society/Japanese Respiratory Society/Latin American Thoracic Association treatment guidelines. These drugs slow the progression of IPF by reducing the rate of decline in lung function. Their adverse event profile is characterized mainly by gastrointestinal events, which can be managed through dose adjustment and symptom management. Management of IPF should also include smoking cessation, vaccinations, and supportive care such as patient education, pulmonary rehabilitation, and the use of supplemental oxygen as well as optimizing the management of comorbidities. Relevance to Patient Care and Clinical Practice: This review provides clinical pharmacists with information on the course of IPF, what can be expected of current treatments, and how to help patients manage their drug therapy. Conclusions: IPF is a progressive disease, but treatments are available that can slow the progression of the disease. Clinical pharmacists can play an important role in the care of patients with IPF through patient education, monitoring medication compliance and safety, ensuring drugs for comorbidities are optimized, and preventive strategies such as immunizations.


Assuntos
Fibrose Pulmonar Idiopática/tratamento farmacológico , Indóis/uso terapêutico , Farmacêuticos/organização & administração , Piridonas/uso terapêutico , Comorbidade , Progressão da Doença , Feminino , Humanos , Indóis/administração & dosagem , Indóis/efeitos adversos , Masculino , Adesão à Medicação , Pessoa de Meia-Idade , Educação de Pacientes como Assunto/organização & administração , Piridonas/administração & dosagem , Piridonas/efeitos adversos
16.
J Immunol ; 199(5): 1827-1834, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28747341

RESUMO

The innate immune components that modulate allergic contact hypersensitivity (CHS) responses are poorly defined. Using human skin from contact dermatitis patients and a mouse model of CHS, we find that hapten allergens disrupt the Arginase1 (Arg1) and inducible NO synthase (iNOS) dynamic in monocytes/macrophages (mono/MΦ), which renders those cells ineffectual in suppressing skin inflammation. Mice lacking Arg1 in MΦ develop increased CHS characterized by elevated ear thickening, mono/MΦ-dominated dermal inflammation, and increased iNOS and IL-6 expression compared with control mice. Treatment of Arg1flox/flox; LysMCre+/- mice with a selective NOS inhibitor or knockout of Nos2, encoding iNOS, significantly ameliorates CHS. Our findings suggest a critical role for Arg1 in mono/MΦ in suppressing CHS through dampening Nos2 expression. These results support that increasing Arg1 may be a potential therapeutic avenue in treating allergic contact dermatitis.


Assuntos
Arginase/metabolismo , Dermatite Alérgica de Contato/imunologia , Macrófagos/imunologia , Óxido Nítrico Sintase Tipo II/metabolismo , Pele/imunologia , Alérgenos/imunologia , Animais , Arginase/genética , Células Cultivadas , Dermatite Alérgica de Contato/genética , Modelos Animais de Doenças , Feminino , Haptenos/imunologia , Humanos , Imunidade Inata , Interleucina-6/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Óxido Nítrico Sintase Tipo II/genética
17.
Am J Respir Cell Mol Biol ; 59(2): 257-266, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29481287

RESUMO

Accurate and reproducible assessments of experimental lung injury and inflammation are critical for basic and translational research. In particular, investigators use various methods for BAL and euthanasia; however, the impact of these methods on assessments of injury and inflammation is unknown. To define potential effects, we compared methods of lavage and euthanasia in uninjured mice and after a mild lung injury model (ozone). C57BL/6J male mice (8-10 weeks old) underwent BAL after euthanasia with ketamine/xylazine, carbon dioxide (CO2), or isoflurane. BAL methods included 800 µl of isotonic solution instilled and withdrawn three times, and one or three passive fills and drainage to 20 cm H2O. Parallel experiments were performed 24 hours after 3 hours of ozone (O3) exposure at 2 ppm. BAL total cell counts/differentials and total protein/albumin were determined. Lung histology was evaluated for lung inflammation or injury. BAL cells were cultured and stimulated with PBS, PMA, or LPS for 4 hours and supernatants were evaluated for cytokine content. In uninjured mice, we observed differences due to the lavage and euthanasia methods used. The lavage method increased total cells and total protein/albumin in uninjured and O3-exposed mice, with the 800-µl instillation having the highest values. Isoflurane increased total BAL cells, whereas CO2 euthanasia increased the total protein/albumin levels in uninjured mice. These effects limited our ability to detect differences in BAL injury measures after O3 exposure. In conclusion, the method used for lavage and euthanasia affects measures of lung inflammation/injury and should be considered a variable in model assessments.


Assuntos
Relação Dose-Resposta a Droga , Eutanásia , Inflamação/patologia , Lesão Pulmonar/patologia , Animais , Líquido da Lavagem Broncoalveolar/citologia , Pulmão/patologia , Masculino , Mastócitos/patologia , Camundongos Endogâmicos C57BL
18.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L328-L338, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28473325

RESUMO

Primary cilia (PC) are solitary cellular organelles that play critical roles in development, homeostasis, and disease pathogenesis by modulating key signaling pathways such as Sonic Hedgehog and calcium flux. The antenna-like shape of PC enables them also to facilitate sensing of extracellular and mechanical stimuli into the cell, and a critical role for PC has been described for mesenchymal cells such as chondrocytes. However, nothing is known about the role of PC in airway smooth muscle cells (ASMCs) in the context of airway remodeling. We hypothesized that PC on ASMCs mediate cell contraction and are thus integral in the remodeling process. We found that PC are expressed on ASMCs in asthmatic lungs. Using pharmacological and genetic methods, we demonstrated that PC are necessary for ASMC contraction in a collagen gel three-dimensional model both in the absence of external stimulus and in response to the extracellular component hyaluronan. Mechanistically, we demonstrate that the effect of PC on ASMC contraction is, to a small extent, due to their effect on Sonic Hedgehog signaling and, to a larger extent, due to their effect on calcium influx and membrane depolarization. In conclusion, PC are necessary for the development of airway remodeling by mediating calcium flux and Sonic Hedgehog signaling.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Brônquios/patologia , Cílios/patologia , Asma/metabolismo , Asma/patologia , Brônquios/metabolismo , Membrana Celular/metabolismo , Membrana Celular/patologia , Células Cultivadas , Cílios/metabolismo , Células HEK293 , Proteínas Hedgehog/metabolismo , Humanos , Potenciais da Membrana/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Transdução de Sinais/fisiologia
19.
J Immunol ; 194(3): 878-82, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25548231

RESUMO

CD4(+) regulatory T cells (Tregs) are critical for maintaining self-tolerance and function to prevent autoimmune disease. High densities of intratumoral Tregs are generally associated with poor patient prognosis, a correlation attributed to their broad immune-suppressive features. Two major populations of Tregs have been defined, thymically derived natural Tregs (nTregs) and peripherally induced Tregs (iTregs). However, the relative contribution of nTregs versus iTregs to the intratumoral Treg compartment remains controversial. Demarcating the proportion of nTregs versus iTregs has important implications in the design of therapeutic strategies to overcome their antagonistic effects on antitumor immune responses. We used epigenetic, phenotypic, and functional parameters to evaluate the composition of nTregs versus iTregs isolated from mouse tumor models and primary human tumors. Our findings failed to find evidence for extensive intratumoral iTreg induction. Rather, we identified a population of Foxp3-stable nTregs in tumors from mice and humans.


Assuntos
Epigênese Genética , Fatores de Transcrição Forkhead/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Antígenos de Superfície/metabolismo , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Humanos , Imunofenotipagem , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA