Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 101(1): 36-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36214093

RESUMO

Type 1 diabetes (T1D) is caused by aberrant activation of autoreactive T cells specific for the islet beta cells. How islet-specific T cells evade tolerance to become effector T cells is unknown, but it is believed that an altered gut microbiota plays a role. Possible mechanisms include bystander activation of autoreactive T cells in the gut or "molecular mimicry" from cross-reactivity between gut microbiota-derived peptides and islet-derived epitopes. To investigate these mechanisms, we use two islet-specific CD8+ T cell clones and the non-obese diabetic mouse model of type 1 diabetes. Both insulin-specific G9C8 cells and IGRP-specific 8.3 cells underwent early activation and proliferation in the pancreatic draining lymph nodes but not in the Peyer's patches or mesenteric lymph nodes. Mutation of the endogenous epitope for G9C8 cells abolished their CD69 upregulation and proliferation, ruling out G9C8 cell activation by a gut microbiota derived peptide and molecular mimicry. However, previously activated islet-specific effector memory cells but not naïve cells migrated into the Peyer's patches where they increased their cytotoxic function. Oral delivery of butyrate, a microbiota derived anti-inflammatory metabolite, reduced IGRP-specific cytotoxic function. Thus, while initial activation of islet-specific CD8+ T cells occurred in the pancreatic lymph nodes, activated cells trafficked through the gut lymphoid tissues where they gained additional effector function via non-specific bystander activation influenced by the gut microbiota.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Linfócitos T CD8-Positivos , Diabetes Mellitus Tipo 1/genética , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Peptídeos/metabolismo , Linfonodos , Epitopos/metabolismo
2.
Microbiome ; 10(1): 9, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045871

RESUMO

BACKGROUND: Short-chain fatty acids (SCFAs) produced by the gut microbiota have beneficial anti-inflammatory and gut homeostasis effects and prevent type 1 diabetes (T1D) in mice. Reduced SCFA production indicates a loss of beneficial bacteria, commonly associated with chronic autoimmune and inflammatory diseases, including T1D and type 2 diabetes. Here, we addressed whether a metabolite-based dietary supplement has an impact on humans with T1D. We conducted a single-arm pilot-and-feasibility trial with high-amylose maize-resistant starch modified with acetate and butyrate (HAMSAB) to assess safety, while monitoring changes in the gut microbiota in alignment with modulation of the immune system status. RESULTS: HAMSAB supplement was administered for 6 weeks with follow-up at 12 weeks in adults with long-standing T1D. Increased concentrations of SCFA acetate, propionate, and butyrate in stools and plasma were in concert with a shift in the composition and function of the gut microbiota. While glucose control and insulin requirements did not change, subjects with the highest SCFA concentrations exhibited the best glycemic control. Bifidobacterium longum, Bifidobacterium adolescentis, and vitamin B7 production correlated with lower HbA1c and basal insulin requirements. Circulating B and T cells developed a more regulatory phenotype post-intervention. CONCLUSION: Changes in gut microbiota composition, function, and immune profile following 6 weeks of HAMSAB supplementation were associated with increased SCFAs in stools and plasma. The persistence of these effects suggests that targeting dietary SCFAs may be a mechanism to alter immune profiles, promote immune tolerance, and improve glycemic control for the treatment of T1D. TRIAL REGISTRATION: ACTRN12618001391268. Registered 20 August 2018, https://www.anzctr.org.au/Trial/Registration/TrialReview.aspx?id=375792 Video Abstract.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Animais , Diabetes Mellitus Tipo 2/microbiologia , Suplementos Nutricionais , Ácidos Graxos Voláteis , Humanos , Camundongos
3.
Prog Mol Biol Transl Sci ; 171: 215-235, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32475523

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease caused by complex interactions between host genetics and environmental factors, culminating in the T-cell mediated destruction of the insulin producing cells in the pancreas. The rapid increase in disease frequency over the past 50 years or more has been too rapid to attribute to genetics. Dysbiosis of the gut microbiota is currently being widely investigated as a major contributor to environmental change driving increased T1D onset. In this chapter, we discuss the major changes in gut microbiota composition and function linked to T1D risk as well as the potential origin of these changes including infant diet, antibiotic use and host genetics. We examine the interaction between inflammation and gut barrier function and the dysbiotic gut microbiota that have been linked to T1D.


Assuntos
Diabetes Mellitus Tipo 1/patologia , Disbiose/fisiopatologia , Microbioma Gastrointestinal/imunologia , Sistema Imunitário/imunologia , Animais , Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/microbiologia , Humanos
4.
Sci Total Environ ; 644: 1503-1510, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30743863

RESUMO

Microbial pollution of recreational waters poses a significant public health risk which, unless mitigated, will continue to increase with population growth. Water managers must implement strategies to accurately discriminate and source human from animal faecal contamination in complex urbanised environments. Our case-study used a new combination of chemical (i.e. ammonia) and microbial (i.e. Escherichia coli, Bacteroides spp.) faecal monitoring tools in a targeted multi-tiered approach to quickly identify pollution hot-spots and track high-risk subterranean stormwater drains in real-time. We successfully located three point sources of human faecal pollution (both episodic and constant pollution streams) within 11 catchments in a total monitoring time of four months. Alternative approaches for obtaining such fine-scale accuracy are typically labour intensive and require expensive equipment.


Assuntos
Monitoramento Ambiental , Recreação , Microbiologia da Água , Poluição da Água/análise , Bacteroides , Fezes , Poluição da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA