Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
New Phytol ; 238(1): 332-348, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36631978

RESUMO

Pepino mosaic virus (PepMV) is pandemic in tomato crops, causing important economic losses world-wide. No PepMV-resistant varieties have been developed yet. Identification of host factors interacting with PepMV proteins is a promising source of genetic targets to develop PepMV-resistant varieties. The interaction between the PepMV coat protein (CP) and the tomato glutathione S-transferase (GST) SlGSTU38 was identified in a yeast two-hybrid (Y2H) screening and validated by directed Y2H and co-immunoprecipitation assays. SlGSTU38-knocked-out Micro-Tom plants (gstu38) generated by the CRISPR/Cas9 technology together with live-cell imaging were used to understand the role of SlGSTU38 during infection. The transcriptomes of healthy and PepMV-infected wild-type (WT) and gstu38 plants were profiled by RNA-seq analysis. SlGSTU38 functions as a PepMV-specific susceptibility factor in a cell-autonomous manner and relocalizes to the virus replication complexes during infection. Besides, knocking out SlGSTU38 triggers reactive oxygen species accumulation in leaves and the deregulation of stress-responsive genes. SlGSTU38 may play a dual role: On the one hand, SlGSTU38 may exert a proviral function depending on its specific interaction with the PepMV CP; and on the other hand, SlGSTU38 may delay PepMV-infection sensing by participating in the redox intracellular homeostasis in a nonspecific manner.


Assuntos
Potexvirus , Solanum lycopersicum , Viroses , Sequência de Bases , Viroses/genética , Doenças das Plantas
2.
EMBO Rep ; 20(8): e47182, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286648

RESUMO

In eukaryotes, membrane contact sites (MCS) allow direct communication between organelles. Plants have evolved a unique type of MCS, inside intercellular pores, the plasmodesmata, where endoplasmic reticulum (ER)-plasma membrane (PM) contacts coincide with regulation of cell-to-cell signalling. The molecular mechanism and function of membrane tethering within plasmodesmata remain unknown. Here, we show that the multiple C2 domains and transmembrane region protein (MCTP) family, key regulators of cell-to-cell signalling in plants, act as ER-PM tethers specifically at plasmodesmata. We report that MCTPs are plasmodesmata proteins that insert into the ER via their transmembrane region while their C2 domains dock to the PM through interaction with anionic phospholipids. A Atmctp3/Atmctp4 loss of function mutant induces plant developmental defects, impaired plasmodesmata function and composition, while MCTP4 expression in a yeast Δtether mutant partially restores ER-PM tethering. Our data suggest that MCTPs are unique membrane tethers controlling both ER-PM contacts and cell-to-cell signalling.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Glicosiltransferases/genética , Proteínas de Membrana/genética , Plasmodesmos/genética , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/metabolismo , Células Cultivadas , Retículo Endoplasmático/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Glicosiltransferases/deficiência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteínas de Membrana/deficiência , Fosfolipídeos/metabolismo , Células Vegetais , Plantas Geneticamente Modificadas , Plasmodesmos/metabolismo , Plasmodesmos/ultraestrutura , Domínios Proteicos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Nicotiana/genética , Nicotiana/metabolismo , Proteína Vermelha Fluorescente
3.
Traffic ; 17(8): 923-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27161495

RESUMO

We report the initial characterization of an N-terminal oligopeptide '2A-like' sequence that is able to function both as a signal sequence and as a translational recoding element. Owing to this translational recoding activity, two forms of nascent polypeptide are synthesized: (i) when 2A-mediated translational recoding has not occurred: the nascent polypeptide is fused to the 2A-like N-terminal signal sequence and the fusion translation product is targeted to the exocytic pathway, and, (ii) a translation product where 2A-mediated translational recoding has occurred: the 2A-like signal sequence is synthesized as a separate translation product and, therefore, the nascent (downstream) polypeptide lacks the 2A-like signal sequence and is localized to the cytoplasm. This type of dual-functional signal sequence results, therefore, in the partitioning of the translation products between the two sub-cellular sites and represents a newly described form of dual protein targeting.


Assuntos
Biossíntese de Proteínas/fisiologia , Sinais Direcionadores de Proteínas/fisiologia , Transporte Proteico/fisiologia , Ribossomos/metabolismo , Humanos , Oligopeptídeos/metabolismo , Células Vegetais/metabolismo
4.
Plant Physiol ; 168(4): 1563-72, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26084919

RESUMO

Primary plasmodesmata (PD) arise at cytokinesis when the new cell plate forms. During this process, fine strands of endoplasmic reticulum (ER) are laid down between enlarging Golgi-derived vesicles to form nascent PD, each pore containing a desmotubule, a membranous rod derived from the cortical ER. Little is known about the forces that model the ER during cell plate formation. Here, we show that members of the reticulon (RTNLB) family of ER-tubulating proteins in Arabidopsis (Arabidopsis thaliana) may play a role in the formation of the desmotubule. RTNLB3 and RTNLB6, two RTNLBs present in the PD proteome, are recruited to the cell plate at late telophase, when primary PD are formed, and remain associated with primary PD in the mature cell wall. Both RTNLBs showed significant colocalization at PD with the viral movement protein of Tobacco mosaic virus, while superresolution imaging (three-dimensional structured illumination microscopy) of primary PD revealed the central desmotubule to be labeled by RTNLB6. Fluorescence recovery after photobleaching studies showed that these RTNLBs are mobile at the edge of the developing cell plate, where new wall materials are being delivered, but significantly less mobile at its center, where PD are forming. A truncated RTNLB3, unable to constrict the ER, was not recruited to the cell plate at cytokinesis. We discuss the potential roles of RTNLBs in desmotubule formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Citocinese , Retículo Endoplasmático/metabolismo , Plasmodesmos/metabolismo , Proteínas de Arabidopsis/genética , Linhagem Celular , Parede Celular/genética , Recuperação de Fluorescência Após Fotodegradação , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Confocal , Proteínas do Movimento Viral em Plantas/genética , Proteínas do Movimento Viral em Plantas/metabolismo , Plantas Geneticamente Modificadas , Plasmodesmos/genética , Transporte Proteico , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo
5.
Plant Physiol ; 167(3): 738-52, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25576325

RESUMO

Recently, it has become evident that nucleolar passage of movement proteins occurs commonly in a number of plant RNA viruses that replicate in the cytoplasm. Systemic movement of Potato mop-top virus (PMTV) involves two viral transport forms represented by a complex of viral RNA and TRIPLE GENE BLOCK1 (TGB1) movement protein and by polar virions that contain the minor coat protein and TGB1 attached to one extremity. The integrity of polar virions ensures the efficient movement of RNA-CP, which encodes the virus coat protein. Here, we report the involvement of nuclear transport receptors belonging to the importin-α family in nucleolar accumulation of the PMTV TGB1 protein and, subsequently, in the systemic movement of the virus. Virus-induced gene silencing of two importin-α paralogs in Nicotiana benthamiana resulted in significant reduction of TGB1 accumulation in the nucleus, decreasing the accumulation of the virus progeny in upper leaves and the loss of systemic movement of RNA-CP. PMTV TGB1 interacted with importin-α in N. benthamiana, which was detected by bimolecular fluorescence complementation in the nucleoplasm and nucleolus. The interaction was mediated by two nucleolar localization signals identified by bioinformatics and mutagenesis in the TGB1 amino-terminal domain. Our results showed that while TGB1 self-interaction is needed for cell-to-cell movement, importin-α-mediated nucleolar targeting of TGB1 is an essential step in establishing the efficient systemic infection of the entire plant. These results enabled the identification of two separate domains in TGB1: an internal domain required for TGB1 self-interaction and cell-to-cell movement and the amino-terminal domain required for importin-α interaction in plants, nucleolar targeting, and long-distance movement.


Assuntos
Nucléolo Celular/metabolismo , Nicotiana/citologia , Nicotiana/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/metabolismo , alfa Carioferinas/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Técnicas de Silenciamento de Genes , Dados de Sequência Molecular , Fenótipo , Epiderme Vegetal/citologia , Proteínas do Movimento Viral em Plantas/química , Ligação Proteica , Sinais Direcionadores de Proteínas , Transporte Proteico
6.
J Microsc ; 258(1): 1-5, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25523910

RESUMO

Since the discovery of small RNAs and RNA silencing, RNA biology has taken a centre stage in cell and developmental biology. Small RNAs, but also mRNAs and other types of cellular and viral RNAs are processed at specific subcellular localizations. To fully understand cellular RNA metabolism and the various processes influenced by it, techniques are required that permit the sequence-specific tracking of RNAs in living cells. A variety of methods for RNA visualization have been developed since the 1990s, but plant cells pose particular challenges and not all approaches are applicable to them. On the other hand, plant RNA metabolism is particularly diverse and RNAs are even transported between cells, so RNA imaging can potentially provide many valuable insights into plant function at the cellular and tissue level. This Short Review briefly introduces the currently available techniques for plant RNA in vivo imaging and discusses their suitability for different biological questions.


Assuntos
Células Vegetais/ultraestrutura , Plantas/genética , RNA de Plantas/metabolismo , Biologia do Desenvolvimento , Células Vegetais/metabolismo
7.
Mol Plant Microbe Interact ; 27(12): 1331-43, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25387134

RESUMO

Potyvirus HCPro is a multifunctional protein that, among other functions, interferes with antiviral defenses in plants and mediates viral transmission by aphid vectors. We have visualized in vivo the subcellular distribution and dynamics of HCPro from Potato virus Y and its homodimers, using green, yellow, and red fluorescent protein tags or their split parts, while assessing their biological activities. Confocal microscopy revealed a pattern of even distribution of fluorescence throughout the cytoplasm, common to all these modified HCPros, when transiently expressed in Nicotiana benthamiana epidermal cells in virus-free systems. However, in some cells, distinct additional patterns, specific to some constructs and influenced by environmental conditions, were observed: i) a small number of large, amorphous cytoplasm inclusions that contained α-tubulin; ii) a pattern of numerous small, similarly sized, dot-like inclusions distributing regularly throughout the cytoplasm and associated or anchored to the cortical endoplasmic reticulum and the microtubule (MT) cytoskeleton; and iii) a pattern that smoothly coated the MT. Furthermore, mixed and intermediate forms from the last two patterns were observed, suggesting dynamic transports between them. HCPro did not colocalize with actin filaments or the Golgi apparatus. Despite its association with MT, this network integrity was required neither for HCPro suppression of silencing in agropatch assays nor for its mediation of virus transmission by aphids.


Assuntos
Afídeos/virologia , Cisteína Endopeptidases/metabolismo , Nicotiana/virologia , Doenças das Plantas/virologia , Potyvirus/metabolismo , Proteínas Virais/metabolismo , Animais , Transporte Biológico , Cisteína Endopeptidases/genética , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/ultraestrutura , Meio Ambiente , Expressão Gênica , Genes Reporter , Corpos de Inclusão Viral/metabolismo , Corpos de Inclusão Viral/ultraestrutura , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Epiderme Vegetal/ultraestrutura , Epiderme Vegetal/virologia , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Potyvirus/genética , Potyvirus/ultraestrutura , Proteínas Recombinantes de Fusão , Nicotiana/ultraestrutura , Proteínas Virais/genética
8.
Mol Plant Pathol ; 25(5): e13466, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38767756

RESUMO

The movement of potyviruses, the largest genus of single-stranded, positive-sense RNA viruses responsible for serious diseases in crops, is very complex. As potyviruses developed strategies to hijack the host secretory pathway and plasmodesmata (PD) for their transport, the goal of this study was to identify membrane and/or PD-proteins that interact with the 6K2 protein, a potyviral protein involved in replication and cell-to-cell movement of turnip mosaic virus (TuMV). Using split-ubiquitin membrane yeast two-hybrid assays, we screened an Arabidopsis cDNA library for interactors of TuMV6K2. We isolated AtHVA22a (Hordeum vulgare abscisic acid responsive gene 22), which belongs to a multigenic family of transmembrane proteins, homologous to Receptor expression-enhancing protein (Reep)/Deleted in polyposis (DP1)/Yop1 family proteins in animal and yeast. HVA22/DP1/Yop1 family genes are widely distributed in eukaryotes, but the role of HVA22 proteins in plants is still not well known, although proteomics analysis of PD fractions purified from Arabidopsis suspension cells showed that AtHVA22a is highly enriched in a PD proteome. We confirmed the interaction between TuMV6K2 and AtHVA22a in yeast, as well as in planta by using bimolecular fluorescence complementation and showed that TuMV6K2/AtHVA22a interaction occurs at the level of the viral replication compartment during TuMV infection. Finally, we showed that the propagation of TuMV is increased when AtHVA22a is overexpressed in planta but slowed down upon mutagenesis of AtHVA22a by CRISPR-Cas9. Altogether, our results indicate that AtHVA22a plays an agonistic effect on TuMV propagation and that the C-terminal tail of the protein is important in this process.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potyvirus , Potyvirus/patogenicidade , Potyvirus/fisiologia , Arabidopsis/virologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Doenças das Plantas/virologia , Proteínas Virais/metabolismo , Proteínas Virais/genética , Replicação Viral , Nicotiana/virologia , Nicotiana/genética
9.
Plant Physiol ; 158(3): 1359-70, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22253256

RESUMO

Potato virus X (PVX) requires three virally encoded proteins, the triple gene block (TGB), for movement between cells. TGB1 is a multifunctional protein that suppresses host gene silencing and moves from cell to cell through plasmodesmata, while TGB2 and TGB3 are membrane-spanning proteins associated with endoplasmic reticulum-derived granular vesicles. Here, we show that TGB1 organizes the PVX "X-body," a virally induced inclusion structure, by remodeling host actin and endomembranes (endoplasmic reticulum and Golgi). Within the X-body, TGB1 forms helically arranged aggregates surrounded by a reservoir of the recruited host endomembranes. The TGB2/3 proteins reside in granular vesicles within this reservoir, in the same region as nonencapsidated viral RNA, while encapsidated virions accumulate at the outer (cytoplasmic) face of the X-body, which comprises a highly organized virus "factory." TGB1 is both necessary and sufficient to remodel host actin and endomembranes and to recruit TGB2/3 to the X-body, thus emerging as the central orchestrator of the X-body. Our results indicate that the actin/endomembrane-reorganizing properties of TGB1 function to compartmentalize the viral gene products of PVX infection.


Assuntos
Actinas/metabolismo , Membranas Intracelulares/metabolismo , Proteínas do Movimento Viral em Plantas/metabolismo , Potexvirus/metabolismo , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Vesículas Citoplasmáticas/metabolismo , Vesículas Citoplasmáticas/virologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/virologia , Imunofluorescência/métodos , Genes Virais , Complexo de Golgi/metabolismo , Complexo de Golgi/virologia , Membranas Intracelulares/virologia , Microscopia Eletrônica , Doenças das Plantas/virologia , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Folhas de Planta/virologia , Proteínas do Movimento Viral em Plantas/genética , Plasmodesmos/metabolismo , Plasmodesmos/virologia , Potexvirus/genética , Potexvirus/patogenicidade , Potexvirus/fisiologia , Transporte Proteico , Nicotiana/anatomia & histologia , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Replicação Viral
10.
Methods Mol Biol ; 2604: 193-202, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36773234

RESUMO

The actin cytoskeleton has close but so far incompletely understood connections to plasmodesmata, the cell junctions of plants. Plasmodesmata are essential for plant development and responses to biotic and abiotic stresses and facilitate the intercellular exchange of metabolites and hormones but also macromolecules such as proteins and RNAs. The molecular size exclusion limited of plasmodesmata is dynamically regulated, including by actin-associated proteins. Therefore, experimental analysis of plasmodesmal regulation can be relevant to plant cytoskeleton research. This chapter presents two simple imaging-based protocols for analyzing macromolecular cell-to-cell connectivity in leaves.


Assuntos
Plantas , Plasmodesmos , Plasmodesmos/metabolismo , Citoesqueleto , Actinas/metabolismo , Desenvolvimento Vegetal
11.
Plants (Basel) ; 12(16)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37631227

RESUMO

Heavy metal-associated isoprenylated plant proteins (HIPPs) are a metallochaperone-like protein family comprising a combination of structural features unique to vascular plants. HIPPs possess both one or two heavy metal-binding domains and an isoprenylation site, facilitating a posttranslational protein lipid modification. Recent work has characterized individual HIPPs across numerous different species and provided evidence for varied functionalities. Interestingly, a significant number of HIPPs have been identified in proteomes of plasmodesmata (PD)-nanochannels mediating symplastic connectivity within plant tissues that play pivotal roles in intercellular communication during plant development as well as responses to biotic and abiotic stress. As characterized functions of many HIPPs are linked to stress responses, plasmodesmal HIPP proteins are potentially interesting candidate components of signaling events at or for the regulation of PD. Here, we review what is known about PD-localized HIPP proteins specifically, and how the structure and function of HIPPs more generally could link to known properties and regulation of PD.

12.
Mol Plant Pathol ; 23(12): 1807-1814, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35987858

RESUMO

Plant reticulon (RTN) proteins are capable of constricting membranes and are vital for creating and maintaining tubules in the endoplasmic reticulum (ER), making them prime candidates for the formation of the desmotubule in plasmodesmata (PD). RTN3 and RTN6 have previously been detected in an Arabidopsis PD proteome and have been shown to be present in primary PD at cytokinesis. It has been suggested that RTN proteins form protein complexes with proteins in the PD plasma membrane and desmotubule to stabilize the desmotubule constriction and regulate PD aperture. Viral movement proteins (vMPs) enable the transport of viruses through PD and can be ER-integral membrane proteins or interact with the ER. Some vMPs can themselves constrict ER membranes or localize to RTN-containing tubules; RTN proteins and vMPs could be functionally linked or potentially interact. Here we show that different vMPs are capable of interacting with RTN3 and RTN6 in a membrane yeast two-hybrid assay, coimmunoprecipitation, and Förster resonance energy transfer measured by donor excited-state fluorescence lifetime imaging microscopy. Furthermore, coexpression of the vMP CMV-3a and RTN3 results in either the vMP or the RTN changing subcellular localization and reduces the ability of CMV-3a to open PD, further indicating interactions between the two proteins.


Assuntos
Arabidopsis , Infecções por Citomegalovirus , Proteínas Virais/metabolismo , Nicotiana , Plasmodesmos/metabolismo , Arabidopsis/metabolismo , Infecções por Citomegalovirus/metabolismo
13.
Traffic ; 10(5): 536-51, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19220815

RESUMO

Almost nothing is known of the earliest stages of plant virus infections. To address this, we microinjected Cy3 (UTP)-labelled tobacco mosaic virus (TMV) into living tobacco trichome cells. The Cy3-virions were infectious, and the viral genome trafficked from cell to cell. However, neither the fluorescent vRNA pool nor the co-injected green fluorescent protein (GFP) left the injected trichome, indicating that the synthesis of (unlabelled) progeny viral (v)RNA is required to initiate cell-to-cell movement, and that virus movement is not accompanied by passive plasmodesmatal gating. Cy3-vRNA formed granules that became anchored to the motile cortical actin/endoplasmic reticulum (ER) network within minutes of injection. Granule movement on actin/ER was arrested by actin inhibitors indicating actin-dependent RNA movement. The 5' methylguanosine cap was shown to be required for vRNA anchoring to the actin/ER. TMV vRNA lacking the 5' cap failed to form granules and was degraded in the cytoplasm. Removal of the 3' untranslated region or replicase both inhibited replication but did not prevent granule formation and movement. Dual-labelled TMV virions in which the vRNA and the coat protein were highlighted with different fluorophores showed that both fluorescent signals were initially located on the same ER-bound granules, indicating that TMV virions may become attached to the ER prior to uncoating of the viral genome.


Assuntos
Retículo Endoplasmático/virologia , Nicotiana/virologia , Vírus do Mosaico do Tabaco/genética , Vírus do Mosaico do Tabaco/metabolismo , Actinas/genética , Actinas/metabolismo , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Genoma Viral , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Infecções/genética , Infecções/metabolismo , Infecções/virologia , Movimento , Fenômenos Fisiológicos/genética , Ligação Proteica/genética , Transporte Proteico/genética , RNA Viral/genética , RNA Viral/metabolismo , Transdução de Sinais/genética , Nicotiana/genética , Nicotiana/metabolismo , Vírion/genética , Vírion/metabolismo
14.
Eukaryot Cell ; 9(4): 547-57, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20139238

RESUMO

This study demonstrates the utility of Lifeact for the investigation of actin dynamics in Neurospora crassa and also represents the first report of simultaneous live-cell imaging of the actin and microtubule cytoskeletons in filamentous fungi. Lifeact is a 17-amino-acid peptide derived from the nonessential Saccharomyces cerevisiae actin-binding protein Abp140p. Fused to green fluorescent protein (GFP) or red fluorescent protein (TagRFP), Lifeact allowed live-cell imaging of actin patches, cables, and rings in N. crassa without interfering with cellular functions. Actin cables and patches localized to sites of active growth during the establishment and maintenance of cell polarity in germ tubes and conidial anastomosis tubes (CATs). Recurrent phases of formation and retrograde movement of complex arrays of actin cables were observed at growing tips of germ tubes and CATs. Two populations of actin patches exhibiting slow and fast movement were distinguished, and rapid (1.2 microm/s) saltatory transport of patches along cables was observed. Actin cables accumulated and subsequently condensed into actin rings associated with septum formation. F-actin organization was markedly different in the tip regions of mature hyphae and in germ tubes. Only mature hyphae displayed a subapical collar of actin patches and a concentration of F-actin within the core of the Spitzenkörper. Coexpression of Lifeact-TagRFP and beta-tubulin-GFP revealed distinct but interrelated localization patterns of F-actin and microtubules during the initiation and maintenance of tip growth.


Assuntos
Actinas/metabolismo , Corantes Fluorescentes/metabolismo , Proteínas Fúngicas/metabolismo , Neurospora crassa/metabolismo , Actinas/genética , Actinas/ultraestrutura , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Polaridade Celular , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Proteínas Fúngicas/genética , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Microtúbulos/ultraestrutura , Neurospora crassa/crescimento & desenvolvimento , Neurospora crassa/ultraestrutura , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tiazolidinas/farmacologia , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
Biochem J ; 430(1): 21-37, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20662771

RESUMO

Bioimaging contributes significantly to our understanding of plant virus infections. In the present review, we describe technical advances that enable imaging of the infection process at previously unobtainable levels. We highlight how such new advances in subcellular imaging are contributing to a detailed dissection of all stages of the viral infection process. Specifically, we focus on: (i) the increasingly detailed localizations of viral proteins enabled by a diversifying palette of cellular markers; (ii) approaches using fluorescence microscopy for the functional analysis of proteins in vivo; (iii) the imaging of viral RNAs; (iv) methods that bridge the gap between optical and electron microscopy; and (v) methods that are blurring the distinction between imaging and structural biology. We describe the advantages and disadvantages of such techniques and place them in the broader perspective of their utility in analysing plant virus infection.


Assuntos
Imagem Molecular/métodos , Vírus de Plantas/fisiologia , Plantas/virologia , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Plantas/química , Plantas/ultraestrutura , Biossíntese de Proteínas , Mapeamento de Interação de Proteínas , RNA Viral/análise , Proteínas Recombinantes de Fusão/análise , Proteínas Recombinantes de Fusão/genética , Proteínas Virais/análise , Proteínas Virais/genética
16.
Plant J ; 57(4): 758-70, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18980643

RESUMO

We describe a method for localizing plant viral RNAs in vivo using Pumilio, an RNA-binding protein, coupled to bimolecular fluorescence complementation (BiFC). Two Pumilio homology domain (PUMHD) polypeptides, fused to either the N- or C-terminal halves of split mCitrine, were engineered to recognize two closely adjacent eight-nucleotide sequences in the genomic RNA of tobacco mosaic virus (TMV). Binding of the PUMHDs to their target sites brought the split mCitrine halves into close proximity, allowing BiFC to occur and revealing the localization of viral RNA within infected cells. The bulk of the RNA was sequestered in characteristic inclusion bodies known as viral replication complexes (VRCs), with a second population of RNA localized in discrete particles distributed throughout the peripheral cytoplasm. Transfer of the TMV Pumilio recognition sequences into the genome of potato virus X (PVX) allowed the PVX RNA to be localized. Unlike TMV, the PVX RNA was concentrated in distinctive 'whorls' within the VRC. Optical sectioning of the PVX VRCs revealed that one of the viral movement proteins was localized to the centres of the RNA whorls, demonstrating significant partitioning of viral RNA and proteins within the VRC. The utility of Pumilio as a fluorescence-based reporter for viral RNA is discussed.


Assuntos
Genoma Viral , Nicotiana/virologia , RNA Viral/análise , Proteínas de Ligação a RNA/metabolismo , Fluorescência , Microscopia Confocal , Microscopia Eletrônica , Potexvirus/isolamento & purificação , Engenharia de Proteínas , Nicotiana/ultraestrutura , Vírus do Mosaico do Tabaco/isolamento & purificação
17.
Mol Plant Microbe Interact ; 23(11): 1486-97, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20923354

RESUMO

The triple-gene-block (TGB)1 protein of Potato mop-top virus (PMTV) was fused to fluorescent proteins and expressed in epidermal cells of Nicotiana benthamiana under the control of the 35S promoter. TGB1 fluorescence was observed in the cytoplasm, nucleus, and nucleolus and occasionally associated with microtubules. When expressed from a modified virus (PMTV.YFP-TGB1) which formed local lesions but was not competent for systemic movement, yellow fluorescent protein (YFP)-TGB1 labeled plasmodesmata in cells at the leading edge of the lesion and plasmodesmata, microtubules, nuclei, and nucleoli in cells immediately behind the leading edge. Deletion of 84 amino acids from the N-terminus of unlabeled TGB1 within the PMTV genome abolished movement of viral RNA to noninoculated leaves. When the same deletion was introduced into PMTV.YFP-TGB1, labeling of microtubules and nucleoli was abolished. The N-terminal 84 amino acids of TGB1 were fused to green fluorescent protein (GFP) and expressed in epidermal cells where GFP localized strongly to the nucleolus (not seen with unfused GFP), indicating that these amino acids contain a nucleolar localization signal; the fusion protein did not label microtubules. This is the first report of nucleolar and microtubule association of a TGB movement protein. The results suggest that PMTV TGB1 requires interaction with nuclear components and, possibly, microtubules for long-distance movement of viral RNA.


Assuntos
Transporte Ativo do Núcleo Celular/fisiologia , Microtúbulos/fisiologia , Nicotiana/citologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/metabolismo , Transporte Biológico , Células Cultivadas , Regulação Viral da Expressão Gênica/fisiologia , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/genética
18.
Front Plant Sci ; 11: 862, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719692

RESUMO

To infect their hosts and cause disease, plant viruses must replicate within cells and move throughout the plant both locally and systemically. RNA virus replication occurs on the surface of various cellular membranes, whose shape and composition become extensively modified in the process. Membrane contact sites (MCS) can mediate non-vesicular lipid-shuttling between different membranes and viruses co-opt components of these structures to make their membrane environment suitable for replication. Whereas animal viruses exit and enter cells when moving throughout their host, the rigid wall of plant cells obstructs this pathway and plant viruses therefore move between cells symplastically through plasmodesmata (PD). PD are membranous channels connecting nearly all plant cells and are now viewed to constitute a specialized type of endoplasmic reticulum (ER)-plasma membrane (PM) MCS themselves. Thus, both replication and movement of plant viruses rely on MCS. However, recent work also suggests that for some viruses, replication and movement are closely coupled at ER-PM MCS at the entrances of PD. Movement-coupled replication at PD may be distinct from the main bulk of replication and virus accumulation, which produces progeny virions for plant-to-plant transmission. Thus, MCS play a central role in plant virus infections, and may provide a link between two essential steps in the viral life cycle, replication and movement. Here, we provide an overview of plant virus-MCS interactions identified to date, and place these in the context of the connection between viral replication and cell-to-cell movement.

19.
Methods Mol Biol ; 2166: 157-178, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32710408

RESUMO

Subcellular localizations of RNAs can be imaged in vivo with genetically encoded reporters consisting of a sequence-specific RNA-binding protein (RBP) fused to a fluorescent protein. Several such reporter systems have been described based on RBPs that recognize RNA stem-loops. Here we describe RNA tagging for imaging with an inactive mutant of the bacterial endonuclease Csy4, which has a significantly higher affinity for its cognate stem-loop than alternative systems. This property allows for sensitive imaging with only few tandem copies of the target stem-loop inserted into the RNA of interest.


Assuntos
Proteínas de Bactérias/genética , Proteínas Associadas a CRISPR/genética , Endorribonucleases/genética , Fungos/genética , Genes Reporter/genética , Microscopia Confocal/métodos , Plantas/genética , Proteínas de Ligação a RNA/genética , RNA/genética , Proteínas de Bactérias/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Clonagem Molecular , Endorribonucleases/metabolismo , Fungos/metabolismo , Expressão Gênica/genética , Sequências Repetidas Invertidas/genética , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Neurospora crassa/genética , Neurospora crassa/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Plantas/metabolismo , Plantas/virologia , Ligação Proteica , RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/virologia , Transformação Genética
20.
Curr Opin Plant Biol ; 43: 82-88, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29476981

RESUMO

The phloem is of central importance to plant viruses, providing the route by which they spread throughout their host. Compared with virus movement in non-vascular tissue, phloem entry, exit, and long-distance translocation usually involve additional viral factors and complex virus-host interactions, probably, because the phloem has evolved additional protection against these molecular 'hitchhikers'. Recent progress in understanding phloem trafficking of endogenous mRNAs along with observations of membranous viral replication 'factories' in sieve elements challenge existing conceptions of virus long-distance transport. At the same time, the central role of the phloem in plant defences against viruses and the sophisticated viral manipulation of this host tissue are beginning to emerge.


Assuntos
Floema/virologia , Doenças das Plantas/virologia , Vírus de Plantas/fisiologia , Plantas/virologia , Transporte Biológico , Floema/imunologia , Floema/metabolismo , Doenças das Plantas/imunologia , Plantas/imunologia , Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA