Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Bioconjug Chem ; 31(9): 2136-2146, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32697078

RESUMO

Engineering cysteines at specific sites in antibodies to create well-defined ADCs for the treatment of cancer is a promising approach to increase the therapeutic index and helps to streamline the manufacturing process. Here, we report the development of an in silico screening procedure to select for optimal sites in an antibody to which a hydrophobic linker-drug can be conjugated. Sites were identified inside the cavity that is naturally present in the Fab part of the antibody. Conjugating a linker-drug to these sites demonstrated the ability of the antibody to shield the hydrophobic character of the linker-drug while resulting ADCs maintained their cytotoxic potency in vitro. Comparison of site-specific ADCs versus randomly conjugated ADCs in an in vivo xenograft model revealed improved efficacy and exposure. We also report a selective reducing agent that is able to reduce the engineered cysteines while leaving the interchain disulfides in the oxidized state. This enables us to manufacture site-specific ADCs without introducing impurities associated with the conventional reduction/oxidation procedure for site-specific conjugation.


Assuntos
Antibióticos Antineoplásicos/química , Cisteína/química , Duocarmicinas/análogos & derivados , Imunoconjugados/química , Animais , Antibióticos Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Duocarmicinas/uso terapêutico , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/uso terapêutico , Imunoglobulina G/química , Imunoglobulina G/uso terapêutico , Camundongos , Modelos Moleculares , Neoplasias/tratamento farmacológico , Oxirredução
2.
Mol Pharm ; 12(6): 1813-35, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25635711

RESUMO

Antibody-drug conjugates (ADCs) that are currently on the market or in clinical trials are predominantly based on two drug classes: auristatins and maytansinoids. Both are tubulin binders and block the cell in its progression through mitosis. We set out to develop a new class of linker-drugs based on duocarmycins, potent DNA-alkylating agents that are composed of a DNA-alkylating and a DNA-binding moiety and that bind into the minor groove of DNA. Linker-drugs were evaluated as ADCs by conjugation to the anti-HER2 antibody trastuzumab via reduced interchain disulfides. Duocarmycin 3b, bearing an imidazo[1,2-a]pyridine-based DNA-binding unit, was selected as the drug moiety, notably because of its rapid degradation in plasma. The drug was incorporated into the linker-drugs in its inactive prodrug form, seco-duocarmycin 3a. Linker attachment to the hydroxyl group in the DNA-alkylating moiety was favored over linking to the DNA-binding moiety, as the first approach gave more consistent results for in vitro cytotoxicity and generated ADCs with excellent human plasma stability. Linker-drug 2 was eventually selected based on the properties of the corresponding trastuzumab conjugate, SYD983, which had an average drug-to-antibody ratio (DAR) of about 2. SYD983 showed subnanomolar potencies against multiple human cancer cell lines, was highly efficacious in a BT-474 xenograft model, and had a long half-life in cynomolgus monkeys, in line with high stability in monkey and human plasma. Studies comparing ADCs with a different average DAR showed that a higher average DAR leads to increased efficacy but also to somewhat less favorable physicochemical and toxicological properties. Fractionation of SYD983 with hydrophobic interaction chromatography resulted in SYD985, consisting of about 95% DAR2 and DAR4 species in an approximate 2:1 ratio and having an average DAR of about 2.8. SYD985 combines several favorable properties from the unfractionated ADCs with an improved homogeneity. It was selected for further development and recently entered clinical Phase I evaluation.


Assuntos
Imunoconjugados/química , Indóis/química , Receptor ErbB-2/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Duocarmicinas , Humanos , Imunoconjugados/farmacocinética , Pirrolidinonas/química
3.
Org Biomol Chem ; 8(8): 1881-4, 2010 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-20449493

RESUMO

Oligoprolines (OPs) are used as rigid backbone scaffolds for the design of oligomeric ligands that target specific G protein-coupled receptors. The OPs were designed to vary in length, the position and number of the ligand-functionalized residues incorporated. For all synthesized compounds a typical PP type II helix was evidenced by circular dichroism indicating that decoration of the helix with large ligands did not affect the helical conformation. Pharmacological evaluation revealed that oligomerization of an agonist with the use of an oligoproline scaffold showed an increase in potency when compared to the monomeric counterparts.


Assuntos
Prolina/química , Receptores do LH/agonistas , Receptores do LH/metabolismo , Dicroísmo Circular , Humanos , Ligantes , Prolina/síntese química , Estrutura Secundária de Proteína , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/metabolismo
4.
RSC Chem Biol ; 1(4): 263-272, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34458765

RESUMO

Fluorescent cell surface receptor agonists allow visualization of processes that are set in motion by receptor activation. This study describes the synthesis of two fluorescent, low molecular weight ligands for the follicle-stimulating hormone receptor (FSHR), based on a dihydropyridine (DHP) agonist. We show that both BODIPY- and Cy5-conjugated DHP (m-DHP-BDP and m-DHP-Cy5) are potent FSHR agonists, able to activate receptor signalling with nanomolar potencies and to effect receptor internalisation at higher concentrations. FSHR-dependent uptake of m-DHP-Cy5 is in stark contrast to the cellular uptake of m-DHP-BDP which was efficiently internalised also in the absence of FSHR. Our results comprise a first-in-class fluorescent low molecular weight ligand for in situ FSHR imaging and pertain the potential means for targeted delivery of drugs into the endolysosomal pathway of FSHR-expressing cells.

5.
Naunyn Schmiedebergs Arch Pharmacol ; 378(5): 503-14, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18551279

RESUMO

Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) activate the LH receptor/cyclic AMP (cAMP) signaling pathway to induce ovulation. As an alternative to parenterally administered hCG to treat anovulatory infertility, orally active low molecular weight (LMW) LHR agonists have been developed at Organon. In this paper, we present the mechanism of action of a prototypic, nanomolar potent and almost full LHR agonist, Org 43553. Org 43553 interacts with the endodomain of the LHR, whereas LH acts via the N-terminal exodomain. LH stimulates the cAMP pathway with an EC50 of 35 pM, but this stimulation is not antagonized by simultaneous incubation with Org 43553. At nanomolar concentrations, LH also stimulates phospholipase C (PLC), but Org 43553 is hardly able to do so. In contrast, Org 43553 inhibits LH-induced PLC (IC50 approximately 10 nM). While Org 43553 stimulates dissociation of [125I]hCG from the LHR and reduces [125I]hCG binding, LH reduces specific [3H]Org 43553 binding. We conclude that Org 43553 is a signaling-selective, allosteric LHR agonist. We hypothesize that Org 43553 and LH induce a similar LHR conformation necessary for activating adenylyl cyclase, which initiates most, if not all, physiological responses of LH.


Assuntos
Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Pirimidinas/farmacologia , Receptores do LH/agonistas , Tiofenos/farmacologia , Regulação Alostérica , Animais , Células CHO , Linhagem Celular , Gonadotropina Coriônica/metabolismo , Cricetinae , Cricetulus , Humanos , Concentração Inibidora 50 , Hormônio Luteinizante/administração & dosagem , Hormônio Luteinizante/farmacologia , Pirimidinas/administração & dosagem , Transdução de Sinais/efeitos dos fármacos , Tiofenos/administração & dosagem , Fosfolipases Tipo C/efeitos dos fármacos , Fosfolipases Tipo C/metabolismo
6.
Mol Cancer Ther ; 15(8): 1900-9, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27256376

RESUMO

Uterine serous carcinoma (USC) is an aggressive form of endometrial cancer. Up to 35% of USC may overexpress the HER2/neu oncogene at strong (i.e., 3+) levels by IHC while an additional 40% to 50% express HER2/neu at moderate (2+) or low (1+) levels. We investigated the efficacy of SYD985, (Synthon Biopharmaceuticals), a novel HER2-targeting antibody-drug conjugate (ADC) composed of the mAb trastuzumab linked to a highly potent DNA-alkylating agent (i.e., duocarmycin) in USC. We also compared the antitumor activity of SYD985 in head-to-head experiments to trastuzumab emtansine (T-DM1), a FDA-approved ADC, against multiple primary USC cell lines expressing different levels of HER2/neu in in vitro and in vivo experiments. Using antibody-dependent cellular cytotoxicity (ADCC), proliferation, viability, and bystander killing assays as well as propidium iodide-based flow cytometry assays and multiple in vivo USC mouse xenograft models, we demonstrate for the first time that SYD985 is a novel ADC with activity against USC with strong (3+) as well as low to moderate (i.e., 1+/2+) HER2/neu expression. SYD985 is 10- to 70-fold more potent than T-DM1 in comparative experiments and, unlike T-DM1, it is active against USC demonstrating moderate/low or heterogeneous HER2/neu expression. Clinical studies with SYD985 in patients harboring chemotherapy-resistant USC with low, moderate, and high HER2 expression are warranted. Mol Cancer Ther; 15(8); 1900-9. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Cistadenocarcinoma Seroso/genética , Expressão Gênica , Imunoconjugados/farmacologia , Indóis , Receptor ErbB-2/antagonistas & inibidores , Neoplasias Uterinas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Antineoplásicos/química , Efeito Espectador , Catepsina B/genética , Catepsina B/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Classe I de Fosfatidilinositol 3-Quinases , Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/metabolismo , Cistadenocarcinoma Seroso/patologia , Modelos Animais de Doenças , Duocarmicinas , Feminino , Humanos , Imunoconjugados/química , Indóis/química , Camundongos , Pessoa de Meia-Idade , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Pirrolidinonas/química , Análise de Sobrevida , Neoplasias Uterinas/tratamento farmacológico , Neoplasias Uterinas/metabolismo , Neoplasias Uterinas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biochem Pharmacol ; 85(8): 1162-70, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23415902

RESUMO

Follicle-stimulating hormone (FSH) activates FSH receptors (FSHR) in granulosa cells to induce follicle differentiation, growth and estradiol production. FSH is used clinically to treat female infertility and is administered by injection. To increase patient convenience and compliance, compound homogeneity and composition, low molecular weight (LMW), orally bioavailable, FSHR agonists are now being developed to replace FSH. In this study, we present the signaling mechanisms of a newly developed LMW dihydropyridine agonist of the FSHR, Org 214444-0. Org 214444-0 is shown to be a stereoselective, nanomolar potent FSHR agonist and selective over the structurally related LHR and TSHR. Org 214444-0 is an allosteric agonist interacting with the transmembrane region of the FSHR. When co-incubated with FSH, Org 214444-0 augments FSH's potency in binding (6.5-fold) and adenylyl cyclase/cAMP activation (3.5-fold) in a concentration-dependent manner. Like FSH, Org 214444-0 induces FSHR internalization and is only marginally effective in stimulating phospholipase C. Moreover, Org 214444-0 stimulates cAMP and estradiol production in human granulosa cells in culture and supports the follicular phase in mature female rats. We conclude that Org 214444-0 is a bonafide FSHR agonist.


Assuntos
Di-Hidropiridinas/farmacologia , Receptores do FSH/agonistas , Sulfonamidas/farmacologia , Regulação Alostérica , Sequência de Aminoácidos , Animais , Células CHO , Cricetinae , Cricetulus , AMP Cíclico/fisiologia , Feminino , Hormônio Foliculoestimulante/metabolismo , Dados de Sequência Molecular , Peso Molecular , Ratos , Receptores do FSH/química , Transdução de Sinais , Fosfolipases Tipo C/metabolismo
8.
Br J Pharmacol ; 165(7): 2314-24, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22014107

RESUMO

BACKGROUND AND PURPOSE: Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH: Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS: Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS: Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO.


Assuntos
Aminoquinolinas/farmacologia , Receptores da Tireotropina/antagonistas & inibidores , Adenilil Ciclases/metabolismo , Aminoquinolinas/química , Animais , Células CHO , Cricetinae , Cricetulus , Avaliação Pré-Clínica de Medicamentos , Doença de Graves/tratamento farmacológico , Doença de Graves/imunologia , Humanos , Peso Molecular , Mutagênese Sítio-Dirigida , Ratos , Receptores da Tireotropina/genética , Receptores da Tireotropina/metabolismo , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Transdução de Sinais/efeitos dos fármacos , Tireotropina/metabolismo
9.
PLoS One ; 7(11): e48385, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23152771

RESUMO

Glucocorticoids (GCs) such as prednisolone are potent immunosuppressive drugs but suffer from severe adverse effects, including the induction of insulin resistance. Therefore, development of so-called Selective Glucocorticoid Receptor Modulators (SGRM) is highly desirable. Here we describe a non-steroidal Glucocorticoid Receptor (GR)-selective compound (Org 214007-0) with a binding affinity to GR similar to that of prednisolone. Structural modelling of the GR-Org 214007-0 binding site shows disturbance of the loop between helix 11 and helix 12 of GR, confirmed by partial recruitment of the TIF2-3 peptide. Using various cell lines and primary human cells, we show here that Org 214007-0 acts as a partial GC agonist, since it repressed inflammatory genes and was less effective in induction of metabolic genes. More importantly, in vivo studies in mice indicated that Org 214007-0 retained full efficacy in acute inflammation models as well as in a chronic collagen-induced arthritis (CIA) model. Gene expression profiling of muscle tissue derived from arthritic mice showed a partial activity of Org 214007-0 at an equi-efficacious dosage of prednisolone, with an increased ratio in repression versus induction of genes. Finally, in mice Org 214007-0 did not induce elevated fasting glucose nor the shift in glucose/glycogen balance in the liver seen with an equi-efficacious dose of prednisolone. All together, our data demonstrate that Org 214007-0 is a novel SGRMs with an improved therapeutic index compared to prednisolone. This class of SGRMs can contribute to effective anti-inflammatory therapy with a lower risk for metabolic side effects.


Assuntos
Anti-Inflamatórios não Esteroides/farmacologia , Dibenzazepinas/farmacologia , Receptores de Glucocorticoides/agonistas , Tiadiazóis/farmacologia , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/uso terapêutico , Artrite Experimental/tratamento farmacológico , Artrite Experimental/genética , Glicemia , Dibenzazepinas/uso terapêutico , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Cinética , Fígado/efeitos dos fármacos , Fígado/enzimologia , Masculino , Camundongos , Simulação de Acoplamento Molecular , Prednisolona/farmacologia , Prednisolona/uso terapêutico , Ligação Proteica , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/metabolismo , Tiadiazóis/uso terapêutico
10.
ACS Med Chem Lett ; 2(1): 85-9, 2011 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-24900256

RESUMO

The structural resemblance of the luteinizing hormone receptor (LHR) and follicle-stimulating hormone receptor (FSHR) impedes selective agonistic targeting of one of those by low molecular weight (LMW) ligands. In the present study, we describe a series of dimeric ligands consisting of a LMW agonist with dual activity on the FSHR and the LHR linked to a selective FSHR antagonist. Biological evaluation shows these compounds to be potent and selective LHR agonists, since no agonistic activity on the FSHR was observed. Equimolar mixing of the monomeric counterparts did not yield the pharmacological profile observed for the heterodimeric ligands, and FSHR agonism of the monomeric LHR agonist was still observed. The here-described results show that ligands with unique pharmacological profiles can be obtained by dimerizing monomeric molecules with distinct apposite properties.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA