Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Wound Repair Regen ; 31(3): 321-337, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017097

RESUMO

Angiogenesis is an essential part of normal skin healing, re-establishing blood flow in developing granulation tissue. Non-healing skin wounds are associated with impaired angiogenesis and although the role of re-establishing macroscopic blood flow to limbs to prevent wound chronicity is well investigated, less is known about vascular alterations at the microcirculatory level. We hypothesised that significant phenotypic changes would be evident in blood vessels surrounding chronic skin wounds. Wound edge tissue, proximal to wound (2 cm from wound edge) and non-involved skin (>10 cm from wound edge) was harvested under informed consent from 20 patients undergoing elective amputation due to critical limb ischemia. To assess blood vessel structure and viability, tissue was prepared for histological analysis and labelled with antibodies specific for PECAM-1 (CD31), CD146, endoglin, ALK-1, ALK-5, and p16Ink4a as a marker of cellular senescence. Density of microvasculature was significantly increased in wound edge dermis, which was concomitant with increased labelling for endoglin and CD146. The number of CD31 positive vessel density was unchanged in wound edge tissue relative to non-involved tissue. Co-labelling of endoglin with the transforming growth factor receptor ALK-1, and to a lesser extent ALK-5, demonstrated activation of endothelial cells which correlated with PCNA labelling indicative of proliferation. Analysis of p16Ink4a staining showed a complete lack of immunoreactivity in the vasculature and dermis, although staining was evident in sub-populations of keratinocytes. We conclude that the endoglin-ALK-1-endothelial proliferation axis is active in the vasculature at the edge of chronic skin wounds and is not associated with p16Ink4a mediated senescence. This information could be further used to guide treatment of chronic skin wounds and optimise debridement protocols.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Cicatrização , Humanos , Endoglina , Microcirculação , Antígeno CD146 , Células Endoteliais , Pele/patologia , Proliferação de Células , Receptores Proteína Tirosina Quinases
2.
Wound Repair Regen ; 30(1): 45-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34708478

RESUMO

In the skin-healing field, porcine models are regarded as a useful analogue for human skin due to their numerous anatomical and physiological similarities. Despite the widespread use of porcine models in skin healing studies, the initial origin, recruitment and transition of fibroblasts to matrix-secreting contractile myofibroblasts are not well defined for this model. In this review, we discuss the merit of the pig as an animal for studying myofibroblast origin, as well as the challenges associated with assessing their contributions to skin healing. Although a variety of wound types (incisional, partial thickness, full thickness, burns) have been investigated in pigs in attempts to mimic diverse injuries in humans, direct comparison of human healing profiles with regards to myofibroblasts shows evident differences. Following injury in porcine models, which often employ juvenile animals, myofibroblasts are described in the developing granulation tissue at 4 days, peaking at Days 7-14, and persisting at 60 days post-wounding, although variations are evident depending on the specific pig breed. In human wounds, the presence of myofibroblasts is variable and does not correlate with the age of the wound or clinical contraction. Our comparison of porcine myofibroblast-mediated healing processes with those in humans suggests that further validation of the pig model is essential. Moreover, we identify several limitations evident in experimental design that need to be better controlled, and standardisation of methodologies would be beneficial for the comparison and interpretation of results. In particular, we discuss anatomical location of the wounds, their size and depth, as well as the healing microenvironment (wet vs. moist vs. dry) in pigs and how this could influence myofibroblast recruitment. In summary, although a widespread model used in the skin healing field, further research is required to validate pigs as a useful analogue for human healing with regards to myofibroblasts.


Assuntos
Miofibroblastos , Cicatrização , Animais , Modelos Animais de Doenças , Tecido de Granulação , Pele , Suínos
3.
Int J Mol Sci ; 21(3)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033060

RESUMO

In healthy individuals, the healing of soft tissues such as skin after pathological insult or post injury follows a relatively predictable and defined series of cell and molecular processes to restore tissue architecture and function(s). Healing progresses through the phases of hemostasis, inflammation, proliferation, remodeling, and concomitant with re-epithelialization restores barrier function. Soft tissue healing is achieved through the spatiotemporal interplay of multiple different cell types including neutrophils, monocytes/macrophages, fibroblasts, endothelial cells/pericytes, and keratinocytes. Expressed in most cell types, c-Jun N-terminal kinases (JNK) are signaling molecules associated with the regulation of several cellular processes involved in soft tissue wound healing and in response to cellular stress. A member of the mitogen-activated protein kinase family (MAPK), JNKs have been implicated in the regulation of inflammatory cell phenotype, as well as fibroblast, stem/progenitor cell, and epithelial cell biology. In this review, we discuss our understanding of JNKs in the regulation of cell behaviors related to tissue injury, pathology, and wound healing of soft tissues. Using models as diverse as Drosophila, mice, rats, as well as human tissues, research is now defining important, but sometimes conflicting roles for JNKs in the regulation of multiple molecular processes in multiple different cell types central to wound healing processes. In this review, we focus specifically on the role of JNKs in the regulation of cell behavior in the healing of skin, cornea, tendon, gingiva, and dental pulp tissues. We conclude that while parallels can be drawn between some JNK activities and the control of cell behavior in healing, the roles of JNK can also be very specific modes of action depending on the tissue and the phase of healing.


Assuntos
Tecido Conjuntivo/metabolismo , Tecido Conjuntivo/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Transdução de Sinais/fisiologia , Cicatrização/fisiologia , Animais , Fibroblastos/metabolismo , Fibroblastos/fisiologia , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA