Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(19): 5388-93, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27118832

RESUMO

Targeting a host factor essential for the replication of different viruses but not for the cells offers a higher genetic barrier to the development of resistance, may simplify therapy regimens for coinfections, and facilitates management of emerging viral diseases. DEAD-box polypeptide 3 (DDX3) is a human host factor required for the replication of several DNA and RNA viruses, including some of the most challenging human pathogens currently circulating, such as HIV-1, Hepatitis C virus, Dengue virus, and West Nile virus. Herein, we showed for the first time, to our knowledge, that the inhibition of DDX3 by a small molecule could be successfully exploited for the development of a broad spectrum antiviral agent. In addition to the multiple antiviral activities, hit compound 16d retained full activity against drug-resistant HIV-1 strains in the absence of cellular toxicity. Pharmacokinetics and toxicity studies in rats confirmed a good safety profile and bioavailability of 16d. Thus, DDX3 is here validated as a valuable therapeutic target.


Assuntos
Antivirais/administração & dosagem , RNA Helicases DEAD-box/antagonistas & inibidores , RNA Helicases DEAD-box/metabolismo , Terapia de Alvo Molecular/métodos , Replicação Viral/efeitos dos fármacos , Replicação Viral/fisiologia , Desenho de Fármacos , Inibidores Enzimáticos
2.
Chembiochem ; 18(4): 374-377, 2017 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-27992102

RESUMO

In recent years many advances have been made in the fight against HIV-1 infection. However, the lack of a vaccine, together with the increasing resistance to the highly active anti-retroviral therapy (HAART), make HIV-1 infection still a serious global emergency. Thus, new compounds with original modes of action are continuously required, and natural products have ever been a very interesting class of pharmacologically active molecules. Some of them have been used since ancient times against viral infections. Here we present a work in which we suggest that kuwanon-L, a natural product active as an HIV-1 integrase (IN) inhibitor, might exert its overall antiviral activity through binding to multiple viral targets. Specific enzymatic tests, together with a time-of-addition (TOA) experiment, support our hypothesis of binding both to IN and to reverse transcriptase (RT). Overall, this compound can be considered an attractive lead for the development of new classes of antiviral agents able to overcome the problem of resistance, due to its ability to exert its action by binding simultaneously to multiple viral targets.


Assuntos
Flavonolignanos/química , Flavonolignanos/farmacologia , HIV-1/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Sistemas de Liberação de Medicamentos , Humanos , Estrutura Molecular
3.
Chembiochem ; 17(8): 683-8, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26946324

RESUMO

Because HIV-1 reverse transcriptase is an enzyme whose catalytic activity depends on its heterodimeric structure, this system could be a target for inhibitors that perturb the interactions between the protein subunits, p51 and p66. We previously demonstrated that the small molecule MAS0 reduced the association of the two RT subunits and simultaneously inhibited both the polymerase and ribonuclease H activities. In this study, some analogues of MAS0 were rationally selected by docking studies and evaluated in vitro for their ability to disrupt dimeric assembly. Two inhibitors were identified with improved activity compared to MAS0. This study lays the basis for the rational design of more potent inhibitors of RT dimerization.


Assuntos
Fármacos Anti-HIV/farmacologia , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV/efeitos dos fármacos , HIV/enzimologia , Inibidores da Transcriptase Reversa/farmacologia , Bibliotecas de Moléculas Pequenas/farmacologia , Fármacos Anti-HIV/síntese química , Fármacos Anti-HIV/química , Ativação Enzimática/efeitos dos fármacos , Estabilidade Enzimática/efeitos dos fármacos , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Estrutura Molecular , Multimerização Proteica/efeitos dos fármacos , Inibidores da Transcriptase Reversa/síntese química , Inibidores da Transcriptase Reversa/química , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/química , Relação Estrutura-Atividade , Temperatura , Replicação Viral/efeitos dos fármacos
4.
Bioorg Med Chem Lett ; 26(15): 3436-40, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27374241

RESUMO

The major clinical challenge in drug-resistant chronic myelogenous leukemia (CML) is currently represented by the Bcr-Abl T315I mutant, which is unresponsive to treatment with common first and second generation ATP-competitive tyrosine kinase inhibitors (TKIs). Allosteric inhibition of Bcr-Abl represent a new frontier in the fight against resistant leukemia and few candidates have been identified in the last few years. Among these, myristate pocket (MP) binders discovered by Novartis (e.g. GNF2/5) showed promising results, although they proved to be active against the T315I mutant only in combination with first and second generation ATP-competitive inhibitors. Here we used a cascade screening approach based on sequential fluorescence polarization (FP) screening, in silico docking/dynamics studies and kinetic-enzymatic studies to identify novel MP binders. A pyrazolo[3,4-d]pyrimidine derivative (6) has been identified as a promising allosteric inhibitor active on 32D leukemia cell lines (expressing Bcr-Abl WT and T315I) with no need of combination with any ATP-competitive inhibitor.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Miristatos/farmacologia , Proteínas de Neoplasias/antagonistas & inibidores , Regulação Alostérica/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Membrana/genética , Modelos Moleculares , Estrutura Molecular , Mutação , Miristatos/síntese química , Miristatos/química , Proteínas de Neoplasias/genética , Relação Estrutura-Atividade
5.
Chembiochem ; 16(17): 2507-12, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26360521

RESUMO

HIV-1 integrase (IN) active site inhibitors are the latest class of drugs approved for HIV treatment. The selection of IN strand-transfer drug-resistant HIV strains in patients supports the development of new agents that are active as allosteric IN inhibitors. Here, a docking-based virtual screening has been applied to a small library of natural ligands to identify new allosteric IN inhibitors that target the sucrose binding pocket. From theoretical studies, kuwanon-L emerged as the most promising binder and was thus selected for biological studies. Biochemical studies showed that kuwanon-L is able to inhibit the HIV-1 IN catalytic activity in the absence and in the presence of LEDGF/p75 protein, the IN dimerization, and the IN/LEDGF binding. Kuwanon-L also inhibited HIV-1 replication in cell cultures. Overall, docking and biochemical results suggest that kuwanon-L binds to an allosteric binding pocket and can be considered an attractive lead for the development of new allosteric IN antiviral agents.


Assuntos
Flavonoides/química , Flavonolignanos/química , Inibidores de Integrase de HIV/química , Integrase de HIV/química , HIV-1/fisiologia , Regulação Alostérica , Sítios de Ligação , Linhagem Celular , Flavonoides/metabolismo , Flavonoides/farmacologia , Flavonolignanos/metabolismo , Flavonolignanos/toxicidade , Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/metabolismo , Inibidores de Integrase de HIV/farmacologia , Humanos , Simulação de Acoplamento Molecular , Morus/química , Morus/metabolismo , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Replicação Viral/efeitos dos fármacos
6.
Bioorg Med Chem Lett ; 25(15): 3013-6, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26048795

RESUMO

Enzymes whose catalytic activity depends on multimeric assembly are targets for inhibitors that perturb the interactions between the protein subunits such as the HIV-1 Integrase (IN). Sucrose has been recently crystallized in complex with IN revealing an allosteric binding pocket at the monomer-monomer interface. Herein, molecular dynamics were applied to theoretically test the effect of this small ligand on IN. As a result, such a compound increases the mutual free energy of binding between the two interacting monomers. Biological experiments confirmed the computational forecast.


Assuntos
Inibidores de Integrase de HIV/farmacologia , Integrase de HIV/metabolismo , HIV-1/enzimologia , Sacarose/farmacologia , Sítios de Ligação , Sinergismo Farmacológico , Infecções por HIV/tratamento farmacológico , Infecções por HIV/virologia , Integrase de HIV/química , HIV-1/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , Raltegravir Potássico/farmacologia , Termodinâmica
7.
J Chem Inf Model ; 55(11): 2443-54, 2015 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-26544088

RESUMO

Targeting cellular cofactors instead of viral enzymes represents a new strategy to combat infectious diseases, which should help to overcome the problem of viral resistance. Recently, it has been revealed that the cellular ATPase/RNA helicase X-linked DEAD-box polypeptide 3 (DDX3) is an essential host factor for the replication of several viruses such as HIV, HCV, JEV, Dengue, and West Nile. Accordingly, a drug targeting DDX3 could theoretically inhibit all viruses that are dependent on this host factor. Herein, for the first time, a model of hDDX3 in its closed conformation, which binds the viral RNA was developed by using the homology module of Prime through the Maestro interface of Schrodinger. Next, a structure-based virtual screening protocol was applied to identify DDX3 small molecule inhibitors targeting the RNA binding pocket. As a result, an impressive hit rate of 40% was obtained with the identification of 10 active compounds out of the 25 tested small molecules. The best poses of the active ligands highlighted the crucial residues to be targeted for the inhibition of the helicase activity of DDX3. The obtained results confirm the reliability of the constructed DDX3/RNA model and the proposed computational strategy for investigating novel DDX3 inhibitors.


Assuntos
RNA Helicases DEAD-box/antagonistas & inibidores , Desenho de Fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação/efeitos dos fármacos , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/metabolismo , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , RNA Viral/metabolismo
8.
Antimicrob Agents Chemother ; 58(6): 3043-52, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24614386

RESUMO

We report here the synthesis of 2-aminothiazolones along with their biological properties as novel anti-HIV agents. Such compounds have proven to act through the inhibition of the gp120-CD4 protein-protein interaction that occurs at the very early stage of the HIV-1 entry process. No cytotoxicity was found for these compounds, and broad antiviral activities against laboratory strains and pseudotyped viruses were documented. Docking simulations have also been applied to predict the mechanism, at the molecular level, by which the inhibitors were able to interact within the Phe43 cavity of HIV-1 gp120. Furthermore, a preliminary absorption, distribution, metabolism, and excretion (ADME) evaluation was performed. Overall, this study led the basis for the development of more potent HIV entry inhibitors.


Assuntos
Fármacos Anti-HIV/farmacologia , Antígenos CD4/efeitos dos fármacos , Proteína gp120 do Envelope de HIV/antagonistas & inibidores , Inibidores da Fusão de HIV/farmacologia , HIV-1/efeitos dos fármacos , Fármacos Anti-HIV/química , Antígenos CD4/química , Antígenos CD4/metabolismo , Linhagem Celular , Proteína gp120 do Envelope de HIV/metabolismo , Inibidores da Fusão de HIV/química , Humanos , Simulação de Acoplamento Molecular , Ligação Proteica
9.
Bioorg Med Chem Lett ; 24(1): 280-2, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24314669

RESUMO

A high-throughput molecular docking approach was successfully applied for the selection of potential inhibitors of the Influenza RNA-polymerase which act by targeting the PA-PB1 protein-protein interaction. Commercially available compounds were purchased and biologically evaluated in vitro using an ELISA-based assay. As a result, some compounds possessing a 3-cyano-4,6-diphenyl-pyridine nucleus emerged as effective inhibitors with the best ones showing IC50 values in the micromolar range.


Assuntos
Inibidores Enzimáticos/farmacologia , Vírus da Influenza A/enzimologia , Piridinas/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas Virais/antagonistas & inibidores , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Ensaios de Triagem em Larga Escala , Modelos Moleculares , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Piridinas/química , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas Virais/metabolismo
10.
J Chem Inf Model ; 54(5): 1325-38, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24787133

RESUMO

Abl kinase inhibitors targeting the ATP binding pocket are currently used as a front-line therapy for the treatment of chronic myelogenous leukemia (CML), but their use has significant limitation because of the development of drug resistance (especially due to the T315I mutation). Two compounds (GNF-2 and BO1) have been found able to inhibit the Abl activity through a peculiar mechanism of action. Particularly, GNF-2 acts as allosteric inhibitor against Bcr-Abl wild type (wt), but it has no activity against the gatekeeper mutant T315I. Its activity against the last mutant reappears when used together with an ATP-competitive inhibitor such as Imatinib or Nilotinib. A crystal structure of GNF-2 bound to the Abl myristoyl pocket (MP) has been released. On the contrary, BO1 shows an ATP-competitive/mixed mechanism of action against the wt, while it acts as an allosteric inhibitor against T315I. In order to better understand the mechanism of Abl allosteric inhibition, MD simulations and MM/GBSA analysis were performed on Abl wt and T315I in complex with GNF-2 and BO1, and the results were compared to those found for the natural myristoyl ligand. Similarly to that observed for the myristoyl group, the binding of an allosteric inhibitor to the MP promotes the formation of a compact and inhibited conformation of the wt protein, characterized by the stabilization of the intramolecular interactions that occur between SH2-SH3 and kinase domains. Conversely, an overall higher flexibility was observed with the Abl T315I mutant, especially in the case of GNF-2. Our analysis highlighted differences in the dynamic behavior of GNF-2 and BO1 which could explain the different biological profiles of the two allosteric inhibitors against the T315I mutant.


Assuntos
Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-abl/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sinergismo Farmacológico , Estabilidade Enzimática/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutação , Inibidores de Proteínas Quinases/metabolismo , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Domínios de Homologia de src
11.
Beilstein J Org Chem ; 10: 1114-20, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24991261

RESUMO

Several strategies aimed to "freeze" natural amino acids into more constrained analogues have been developed with the aim of enhancing in vitro potency/selectivity and, more in general, drugability properties. The case of L-glutamic acid (L-Glu, 1) is of particular importance since it is the primary excitatory neurotransmitter in the mammalian central nervous system (CNS) and plays a critical role in a wide range of disorders like schizophrenia, depression, neurodegenerative diseases such as Parkinson's and Alzheimer's and in the identification of new potent and selective ligands of ionotropic and metabotropic glutamate receptors (GluRs). To this aim, bicycle compound Ib was designed and synthesised from D-serine as novel [2.3]-spiro analogue of L-Glu. This frozen amino acid derivative was designed to further limit the rotation around the C3-C4 bond present in the azetidine derivative Ia by incorporating an appropriate spiro moiety. The cyclopropyl moiety was introduced by a diastereoselective rhodium catalyzed cyclopropanation reaction.

12.
Bioorg Med Chem Lett ; 22(9): 3109-14, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22483582

RESUMO

Human immunodeficiency virus-1 integrase (HIV-1 IN) inserts the viral DNA into host cell chromatin in a multistep process. This enzyme exists in equilibrium between monomeric, dimeric, tetrameric and high order oligomeric states. However, monomers of IN are not capable of supporting its catalytic functions and the active form has been shown to be at least a dimer. As a consequence, the development of inhibitors targeting IN dimerization constitutes a promising novel antiviral strategy. In this work, we successfully combined different computational techniques in order to identify small molecule inhibitors of IN dimerization. Additionally, a novel AlphaScreen-based IN dimerization assay was used to evaluate the inhibitory activities of the selected compounds. To the best of our knowledge, this study represents the first successful virtual screening and evaluation of small molecule HIV-1 IN dimerization inhibitors, which may serve as attractive hit compounds for the development of novel anti-HIV.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores de Integrase de HIV/farmacologia , Multimerização Proteica/efeitos dos fármacos , Simulação por Computador , Descoberta de Drogas , Integrase de HIV/química , Inibidores de Integrase de HIV/química
13.
Bioorg Med Chem Lett ; 22(14): 4693-6, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22738633

RESUMO

The use of Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition permitted the synthesis of a new compound that is able to inhibit the HGF-induced scattering of MDCK (epithelial cells) and in vitro tumorigenesis of H1437 (non-small-cell lung cancer) and GTL-16 (human gastric carcinoma). In agreement with biochemical and biological results, docking studies within the ATP binding site of Met suggested for the new synthesized compound a binding mode similar to that of the active compound Triflorcas previously reported.


Assuntos
Inibidores de Proteínas Quinases/síntese química , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Triazóis/síntese química , Linhagem Celular Tumoral , Química Click , Humanos , Modelos Moleculares , Estrutura Molecular , Inibidores de Proteínas Quinases/farmacologia , Relação Estrutura-Atividade , Triazóis/farmacologia
14.
Bioorg Med Chem Lett ; 21(19): 5928-33, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21856155

RESUMO

Neuroblastoma (NB) represents the most common extracranial paediatric solid tumor for which no specific FDA-approved treatment is currently available. The tyrosine kinase c-Src has been reported to play an important role in the differentiation, cell-adhesion and survival of NB cells. Starting from dual Src/Abl inhibitors previously found active in NB cell lines (1-3), small modification of the original structures almost abolished the Abl activity with a contemporary improvement of affinity and specificity for c-Src. Among the synthesized compounds, the most potent c-Src inhibitor (10a) showed a very interesting antiproliferative activity in SH-SY5Y cells with an IC(50) of 80 nM and a favourable ADME profile. A 3D SAR analysis was also attempted and may guide the design of more potent c-Src inhibitors as potential agents for NB treatment.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Quinases da Família src/antagonistas & inibidores , Antineoplásicos/química , Antineoplásicos/farmacocinética , Adesão Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração Inibidora 50 , Modelos Moleculares , Terapia de Alvo Molecular , Neuroblastoma/tratamento farmacológico , Neuroblastoma/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacocinética , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirazóis/síntese química , Pirimidinas , Relação Quantitativa Estrutura-Atividade , Especificidade por Substrato , Quinases da Família src/metabolismo
15.
Proteins ; 78(16): 3396-408, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20878714

RESUMO

A crystal structure of the integrase binding domain (IBD) of the lens epithelium-derived growth factor (LEDGF/p75) in complex with the dimer of the HIV-1 integrase (IN) catalytic core domain (CCD) provides useful information that might help in the understanding of essential protein-protein contacts in HIV-1. However, mutagenic studies indicated that interactions between the full-length proteins were more extensive than the contacts observed in the co-crystal structure of the isolated domains. On the other hand, the biochemical characterization of the interaction between full-length IN and LEDGF/p75 has recently proved that LEDGF/p75 promotes IN tetramerization with two LEDGF/p75 IBD molecules bound to the IN tetramer. This experimental evidence suggests that to obtain a complete structural description of the interactions between the two proteins, the full-length tetrameric structure of IN should be considered. Our aim was to obtain a detailed picture of HIV-1 IN interactions with cellular co-factors that was of general interest, particularly for the development of small molecule IN inhibitors, which mimic the IBD of LEDGF/p75. To this end, we performed bioinformatics analyses to identify protein sequence domains involved in long-range recognition. Subsequently, we applied molecular dynamics techniques to investigate the detailed interactions between the complete tetrameric form of IN and two molecules of the IBD of LEDGF/p75. Our dynamic picture is in agreement with experimental data and, thereby, provides new details of the IN-LEDGF/p75 interaction.


Assuntos
Biologia Computacional/métodos , Integrase de HIV/química , Integrase de HIV/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/química , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Simulação de Dinâmica Molecular , Análise de Sequência de Proteína/métodos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Eletricidade Estática , Termodinâmica , Fatores de Tempo
16.
FASEB J ; 22(5): 1560-71, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18171692

RESUMO

Osteosarcoma is the most frequent primitive malignant tumor of the skeletal system, characterized by an extremely aggressive clinical course that still lacks an effective treatment. Src kinase seems to be involved in the osteosarcoma malignant phenotype. We show that the treatment of human osteosarcoma cell lines with a new pyrazolo[3,4-d]pyrimidine derivative Src inhibitor, namely SI-83, impaired cell viability, with a half-maximal inhibitory concentration of 12 microM in nonstarved cells and a kinetic different from that known for the Src inhibitor PP2. Analysis by terminal deoxynucleotidyl transferase-mediated nick end labeling, Hoechst, and flow cytometric assay showed that SI-83 induced apoptosis in SaOS-2 cells. Moreover, SI-83, by inhibiting Src phosphorylation, decreased in vivo osteosarcoma tumor mass in a mouse model. Finally, SI-83 showed selectivity for osteosarcoma, since it had a far lower effect in primary human osteoblasts. These results show that human osteosarcoma had Src-dependent proliferation and that modulation of Src activity may be a therapeutic target of this new compound with low toxicity for nonneoplastic cells.


Assuntos
Osteossarcoma/tratamento farmacológico , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Quinases da Família src/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Transplante de Neoplasias , Osteoblastos/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia
18.
PLoS One ; 13(6): e0198478, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29870553

RESUMO

Although highly active antiretroviral therapies (HAART) remarkably increased life expectancy of HIV positive people, the rate of novel HIV-1 infections worldwide still represent a major concern. In this context, pre-exposure prophylaxis (PrEP) approaches such as vaginal microbicide gels topically releasing antiretroviral drugs, showed to have a striking impact in limiting HIV-1 spread. Nevertheless, the co-presence of other genital infections, particularly those due to HSV-1 or 2, constitute a serious drawback that strongly limits the efficacy of PrEP approaches. For this reason, combinations of different compounds with mixed antiviral and antiretroviral activity are thoroughly investigated Here we report the synthesis and the biological evaluation of a novel series of rhodanine derivatives, which showed to inhibit both HIV-1 and HSV-1/2 replication at nanomolar concentration, and were found to be active also on acyclovir resistant HSV-2 strains. The compounds showed a considerable reduction of activity in presence of serum due to a high binding to serum albumin, as determined through in vitro ADME evaluations. However, the most promising compound of the series maintained a considerable activity in gel formulation, with an EC50 comparable to that obtained for the reference drug tenofovir. Moreover, the series of compounds showed pharmacokinetic properties suitable for topical formulation, thus suggesting that the novel rhodanine derivatives could represent effective agents to be used as dual anti HIV/HSV microbicides in PrEP approaches.


Assuntos
Antivirais/farmacologia , HIV-1/efeitos dos fármacos , Rodanina/análogos & derivados , Simplexvirus/efeitos dos fármacos , Tiazóis/farmacologia , Animais , Antivirais/química , Chlorocebus aethiops , Farmacorresistência Viral/efeitos dos fármacos , Feminino , Infecções por HIV/prevenção & controle , Células HeLa , Herpes Simples/prevenção & controle , Herpesvirus Humano 1/efeitos dos fármacos , Herpesvirus Humano 2/efeitos dos fármacos , Humanos , Estrutura Molecular , Profilaxia Pré-Exposição , Tiazóis/química , Cremes, Espumas e Géis Vaginais/química , Cremes, Espumas e Géis Vaginais/farmacologia , Células Vero , Replicação Viral/efeitos dos fármacos
19.
PLoS One ; 13(12): e0208333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30532192

RESUMO

Viral infections are an important cause of death worldwide. Unfortunately, there is still a lack of antiviral drugs or vaccines for a large number of viruses, and this represents a remarkable challenge particularly for emerging and re-emerging viruses. For this reason, the identification of broad spectrum antiviral compounds provides a valuable opportunity for developing efficient antiviral therapies. Here we report on a class of rhodanine and thiobarbituric derivatives displaying a broad spectrum antiviral activity against seven different enveloped viruses including an HSV-2 acyclovir resistant strain with favorable selectivity indexes. Due to their selective action on enveloped viruses and to their lipid oxidation ability, we hypothesize a mechanism on the viral envelope that affects the fluidity of the lipid bilayer, thus compromising the efficiency of virus-cell fusion and preventing viral entry.


Assuntos
Antivirais/farmacologia , Vírus/efeitos dos fármacos , Antivirais/química , Herpesvirus Humano 2/efeitos dos fármacos , Bicamadas Lipídicas , Rodanina/química , Rodanina/farmacologia , Tiobarbitúricos/química , Tiobarbitúricos/farmacologia
20.
ChemMedChem ; 12(16): 1359-1368, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28346821

RESUMO

Human p300 is a polyhedric transcriptional coactivator that plays a crucial role in acetylating histones on specific lysine residues. A great deal of evidence shows that p300 is involved in several diseases, including leukemia, tumors, and viral infection. Its involvement in pleiotropic biological roles and connections to diseases provide the rationale to determine how its modulation could represent an amenable drug target. Several p300 inhibitors (i.e., histone acetyltransferase inhibitors, HATis) have been described so far, but they all suffer from low potency, lack of specificity, or low cell permeability, which thus highlights the need to find more effective inhibitors. Our cinnamoyl derivative, 2,6-bis(3-bromo-4-hydroxybenzylidene)cyclohexanone (RC56), was identified as an active and selective p300 inhibitor and was proven to be a good hit candidate to investigate the structure-activity relationship toward p300. Herein, we describe the design, synthesis, and biological evaluation of new HATis structurally related to our hit; moreover, we investigate the interactions between p300 and the best-emerged hits by means of induced-fit docking and molecular-dynamics simulations, which provided insight into the peculiar chemical features that influence their activity toward the targeted enzyme.


Assuntos
Cinamatos/química , Proteína p300 Associada a E1A/metabolismo , Inibidores Enzimáticos/química , Apoptose/efeitos dos fármacos , Compostos de Benzilideno/química , Compostos de Benzilideno/metabolismo , Compostos de Benzilideno/farmacologia , Sítios de Ligação , Linhagem Celular , Cinamatos/metabolismo , Cinamatos/farmacologia , Cicloexanonas/química , Cicloexanonas/metabolismo , Cicloexanonas/farmacologia , Proteína p300 Associada a E1A/antagonistas & inibidores , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA